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Abstract. Even if the phase of a scattering amplitude
may be reconstructed uniquely from a certain set of
observable quantities, the problem of its stability with
respect to small displacements of the data is still open.
We present a detailed discussion of the stability of the
phase of the n N scattering amplitudes obtained from
differential cross section and polarization measure-
ments, using analyticity at fixed momentum transfer
and isospin invariance.

1 Introduction

The problem of the determination of the phase of the
scattering amplitudes in particle physics from experi-
mental data is well-known and attracted considerable
attention over the past decade (see [1] for a review of
its status in 1975). In [2, 3], the present author gave
a proof that the two independent nN scattering
amplitudes A4, (s,t), B, (s,?) (see [3,4] for notation)
may be determined unambiguously from data on the
polarization and differential cross section of the isospin
related reactions n*p—on*p, n p—onp, n p-nn
if one imposes analyticity constraints with respect to
the energy at fixed momentum transfer ¢ and at fixed
energy with respect to the angle. The class of ampli-
tudes which may be reconstructed this way is delimited
by some generally acceptable or experimentally
verifiable restrictions, which we recall below. The
approach of {2,3] allows one to settle the issue of
stability which has been raised a certain number of
years ago [1,5,6] in relation with other arguments for
uniqueness. From the outset, one should point out
that both uniqueness and stability are possible only
if one admits that observables are available with finite
errors at all energies above threshold, including the
unphysical part of the cut, in some range of values
0=t=>=t,. The constraining power of analyticity at
fixed t rests on this hypothesis.

Granted this, the construction of amplitudes of 2, 3]
is stable in an intuitively clear manner, and precise
statements on this item are provided by [3]. Their

proof is not difficult and was omitted in [3]. In this
paper, we take up again the question of stability, and
give it a more detailed treatment than was possible in
[3]. In particular, we present the proofs that are
missing there.

In Sect. 2, we recall the main results of [2,3] and
specify the class of amplitudes for which they hold. In
Sect. 3, we formulate the problem of stability. Section 4
contains a discussion of stability at “small” |¢] (in a
sense that will be given in Sect. 3) where it is easier
and extend the results to larger || in Sect.6. In Sect. 5,
we discuss the way to judge the interval of validity in
t of the phase reconstructed by means of analyticity
constraints.

2 Restrictions on the amplitudes and results
on uniqueness

We call % the class of pairs of functions A, (s, t), B (s, t)
with the following properties: (i) A, (s, t), B, (s,t) are
holomorphic in two variables in a domain D of C?,
that includes a set ([t| £ |t,|) X (corresponding cut s
plane), for some ¢4, with |ty| < 4m2 = 4u?; (ii) at each
t, [t| <ty, |A(s, 1) < C|s|¥®, with, e.,g. N(t)<2 (see
[7-8] for a description of the axiomatic domain of
analyticity);, (iii) A, (s,t), B,(s,t) are continuous
together with their partial derivatives up to order two
as functions of four real variables at points of the cuts;
(iv)ateach r R, t = ¢, the phases @ ,(s), Dy(s) of 4,
B, may be defined by continuity along the cuts, or
by means of small excursions in the complex s plane
at some finite number of points and are bounded:
| @4, 5(s)| < C(2).

The class of holomorphic functions of s, obtained
by restricting any member of a pair of % to a fixed
value of t is called P(s., sg), where s, , s are the “tips”
of the cuts in the s plane. The functions of class P
have several properties that are useful in the following
and that are summarized in Appendix A of [3]. We
also assume then:

(v) At each fixed ¢, the amplitudes k. (v,1), h_(v,t)
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(see [2-4,9] for definitions) are of class P(— vy, v,,),
vy, =i+ t/(4m), v=(s —u)/(4m). The amplitudes h,
h_ bear a direct relation to the observables: |, (v, 1)|?,
l[h_(v, 0|2, |hy (v,t) — h_(v,1)|? are known for |v] > ¥(2);
v(t) is the backward direction of the physical region.
We call these quantities f2(v,t), f2(v,1), f3(v,1).
For v,, < |v| < ¥(t), we show in [ 2, 3] that the following
combinations of h, (v,t), h_(v,t) are known (with
errors) by analytic continuation of the observables off
the physical region:

K,.(v,)=h, (v, )h* (—v,1) 2.1
K_(mtysh_(v,t)h¥ (—v,t) (2.2)
Ko(v,t)= — hy(v,)hE(— v, 1) (2.3)
and thus:

K,)=K,(v,t)+ K_(v,t) — Ko(v, ). (2.4)

It is sufficient to prescribe these complex functions for
v>v,,. Their values for v< —v,, are obtained by
appropriate complex conjugation (see [2,3]). We call
the set of six functions (f,,f_, fo,K+,K_,Ky) the
observables o(t). The method of reconstruction of [2]
requires also knowledge of the combination:

F,t)=(h.(v,h* (v,t) — h_ (v, t)h% (v, 1))/ 4i,

[v| > () 2.5)
= (h (v, )% (= v, 1) — h_(v, 2 (— v, 0))/4i,
Vo < | V< V(1) (2.6)

which is the area of the isospin triangle of the three
amplitudes h,, h_, h, and its analytic extension at
fixed s to the unphysical region. The quantity F2(v, )
may be obtained directly from the observables for all
v and it is assumed that anaiyticity at fixed energy
and knowledge of the forward amplitude aliows the
determination of the sign of F(v, t) (see [2]). The optical
theorem ensures knowledge of the forward amplitude
(see [5,10,3]). With this, the class % of amplitudes is
also restricted through the following conditions:

(e1) there is no point (v,t) with |v| = ¥(¢), 0=t = ¢,
so that f,, f_, fo(v,t) vanish simultaneously; there
is no point (v, 1), v, < v < ¥(t),so that K, K_, K4(v,t)
vanish simultaneously;

(e2) there exists a constant ¢, > 0 and an energy s,
so that A (v,1)| > ¢, |v| for |v] > v(s,, 1), t, £t Z0.

In (e2),

R 0,0) = hy (v,0) + h_ (v, 1) @7
and |h*(v,1)|> may be easily obtained from f3, f2,
2
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(€3) The forward amplitude of elastic scattering
h,(v,t =0) has no symmetrical zeros in the complex
v plane (ie. if h,(»,0)=0, then A, (—v,0)£0 and
h.(0,0) #0);

(¢4) there exist constants c,, v, so that, for [v]| > v,
tO é t éoa |A+(V, t)|/|c+(v’l)| < Cs.

In (e4), the amplitudes A*, C™* are (¢t channel) isospin

even combinations of 4, C (see [4]). Concerning C*,
one also assumes about its phase @q(v, ).

(rl) As vo o0, Dc(v,t)— P (2), uniformly with
respect to ¢ in (ty,0). This exhausts the definition of
the class %; it is shown in [2, 3] that there exists an
interval (£;,0) <(¢y,0), such that the amplitudes
(hy,h_) may be obtained uniquely from the observ-
ables. The value ¢,(0) is a priori unknown, it depends
on the observables o(t), 0 = t = t, and one needs some
way to determine it (see below).

The first step of the reconstruction is the determi-
nation of the ratio:

_h_(v)
RO =~ 2.8)
from o(t):
R= LY sy o)
R()= %‘TF Y < v < ¥(0). (2.10)

It is then argued in [2,3] that the zeros and poles of
R(v,t) determine all the zeros of h,(v,t), h_(v,t) if
t1(0) <t <0, where, we stress, t;(0) depends on the
chosen element of #. It is this determination which
makes the main object of the discussion below on
stability. If the zeros v; of i (v,t) are known, then the
algebra given in Appendix A reconstructs h, (v,?),
t(0)<t<0.

The problem of stability is discussed within a still
smaller class of amplitudes, which we call &. The class
& consists of those elements of # which verify:

1) Tho(v, )l <colvl (2.11)

for |v| > vq, te(ty,0), and some y, 0 <y <1, ¢4 >0;

(s2) thezerosof h, (v,1), h_(v,t)for |[v| > v, 0>t >t,
are isolated, i.e. if h (vy,ty) =0, vy, tyeR, there exists
r>0, so that A, (v,H) 0 in O<|v—vy|<r, O<|t—
tyl <r, v, teR.

(s3) there is no value of t in (fy,0) such that
By, )=0, ho(Vy3,0) =0, vy1, vy2ER, vy 5 > vy

(s4) the following inequalities hold for large |v|eR,
0zt=t,:

+
j%%fv_ < const; v% < const| v}’ (2.12)
‘%’; <Cylv[72% (2.13)

The last inequality is not a consequence of the former
two; it serves also to bound the quantity dF/dv which
is only accessible with difficulty.

(s5) for any m >0 and sufficiently small, at those
points v, for which | R(v, )| < m, it is true that | R(v, #)| >
C|v—v,|# for some C,B>0 and v<|v,|. The same
is true for 1/R(v,t). The constants C, f may be chosen
uniformly in &.



2 Formulation of the problem of stability

3.1 General discussion

We call #(%) the set of observables pertaining to
amplitudes of class &, for 0>t >t,, v, <|v|. It is
convenient to regard an element of .# (%) as a set of
eight functions (K,,K_,Kq, f.,f-,f0,Fi,F,),
where we have appended the areas F{, F,, (2.5,2.6) of
the isospin triangles for v, <v<¥, < |v|, in turn to
the six functions already discussed. Clearly, F2,
F2 may be expressed algebraically in terms of K,
K_,Kqor f,, f_, fo. We write o(t) if the observables
are restricted to a fixed value of t; otherwise, o=
{o(t),0>¢t>ty}. We call & the operator of recons-
truction, leading from #(¥) back to &, for 0=t =
t,(0). Stability means that, if 0, — 0 in some sense in
M (), then Z(0,) = £ (o) (in some sense). This is not
the way in which the problem appears in reality, since
the set .# (%) is “thin” in any topology that mirrors
appropriately the effect of experimental errors. We
start then from an enlarged space of observables, at
fixed ¢, which we call AO(t), made up of all octuplets
of functions (AK, _ o, AF, _ 4, AF; ,) continuous
and with a continuous derivative on their appropriate
domains of definition, with a norm given below, and
try to define an inverse operator %, on AO(t), leading
from Ao(t)e AO(t) to a space H(t) of pairs of functions
h.(v,t), h_(v,t), holomorphic in the cut v plane, with
some topology (given further down). This operator
reduces to ¥ when Ao(t) is obtained from o + Ao in
M (&). In these definitions, we implied that Ao =0 in
AO(t) corresponds to an element of #(%). The
stability problem is to examine the conditions under
which #,:A0(t)— H(t) is continuous at Ao =0.

In fact, as we shall see, ¥, is not defined over the
whole AO(t), but again on a “thin” subset of it AO(?),
which contains Ao = 0, if te(¢, (0), 0). One requires then
a “fitting” procedure, which we shall leave quite
arbitrary, to replace an element of 40(t) by one in
AO(1).

3.2 Properties of the class &

We give first a statement showing how t,(0) may be
estimated from oe.#(%). Its conditions are ideal, in
that o(¢) is not affected by any errors. Then R(v), (2.8)
may be obtained in the whole complex plane exactly
by analytic continuation from its known boundary
values, (2.9, 2.10), and its zeros and poles correspond
to zeros of h_(v,t), h_(v,t), in so far the latter do not
have coincident zeros. The statement is also valid if
oe M (%) (see [2,3]); it describes what happens if we
ignore the possible coincident zeros of h,, h_:

Theorem 3.1. Let h,, (v,t), h_,(v,t) be amplitudes
obtained from o(t), oe M(F), using only the zeros and
poles of Rv, t), for t, < t < Q. If, for all t in some interval
(z,0) =(t,y, 0):

(i) there exists p >0, independent of t, so that the
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zeros of C, (v,t) in the v plane stay contained in a disk
vl <p;
(i1) the quantities

_ [vB™ (v,1)|
m (t) = max 00| (3.1a)
estimated on a circle of radius p, > p and
[vB* (v,1)]
mit)= sup —— > 3.1b)
s R T ) (
are such that:
m; (£) = max (m, (1), m, (¢)) (3.2)
obeys the inequality:
Vtm ) (3.3)
2m

for some 6 >0 (m = mass of the nucleon)

(ii1) the plase @ (v,t) of CF(v,t) is, for v sufficiently
large, contained in an interval (@y,7n — @), P, >0
then h, (v,1), h_,(v,t) coincide with h,, h_ on (1,0).

The proof is given in [2]. We refer to conditions (i)—(iii)
above as conditions (V) and shall use them below
in relation with error affected data (see Sect. ).
Conditions (V) ensure that, for |v| large enough in the
complex v plane, |h* (v,2)| > const|v|; this means that
h* #£0 there and, in particular, that h,, h_ do not
have coincident zeros in that region. Clearly, what is
ensured is much stronger than what is required and
conditions (V) may well be violated, while h, (v,1),
h_(v,1) still fail to have coincident zeros.

We denote by t,(0) the infimum of the values 7, for
which conditions (V) hold. Thus, |t,(0)| <|t,(0)|, and

sentences involving t,(0), t1(0) in the following are
meaningful in the limit of zero errors. The notation
t,(0) is new with respect to [2, 3].

Now, even if te(t, (0),0), but oe.#(%), we cannot
prevent the occurrence that h, , h_ acquire zeros from
infinity, as we move down in ¢, at noncoincident
positions. This would prevent a good control of the
number of zeros in the complex v plane of h, (v,1),
h_(v,t) and is an obstacle to stability. The condition
oc.# (&) removes precisely this.

Namely, if R(v,t} #0, 1/R(v,t) #0 for |v|> v, we
may define the phase of R(v,t) unambiguously by
continuity from thresholds to the right and to the left
and obtain:

ns=[(0r(+ ) — 6r(Vea)) + (O (— vy) — Og(— 00))]/m.
(3.4)

The existence of the limits Jx(+ 00), dgx(— c0) is
ensured by the fact that [R(v,t)] =1 as |v|—> o0, veR,
for all te(tg,0) (according to (e2), (s1)). With this, we
have:
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Theorem 3.2. If oe M (&), te(t,,0)

ng=n, —n_ (3.5)

wheren, ,n_ are the numbers of zeros of h . (v, t), h_ (v, 1)

in the interior of the cut v plane.

Proof. The assumption that h,, h_eP(— vy, v,)

implies that (see Appendix A of [3, 10]):

B_(v,p)

B + (v9 t)

where B_(v,t), B, (v,t) are Blaschke products contain-

ing the zeros of h_ (v, t), h, (v,t) in turn and the nucleon

poles, and Eg(v,?) is the outer function with modulus

|R(v)| along the cuts. Now, (2.9) and the assumptions

(€2), (s1) imply that, for large veR:

IRM)| — 1] <|R(v) — 1] < const(fo/f+)* < C|v]*’ 2,
(3.7

Equation (3.7) and the differentiability of | R| for large
[v|, veR imply (see Appendix B) that:

Ry, )=

Ex(v,1) (3.6)

Egr(v)—exp(i®y), as |v|—> o0 (3.8)

uniformly in ali directions of the v plane, 0 <argv <=
(and to the conjugate value for —n < argv <0). The
Blaschke products B, (v,t), B_(v,t) contain each a
finite number of zeros and thus their ratio tends to
finite limits as |v| — oo, above or below the cuts; these
limits are the same and uniform in all directions in
the upper and lower half plane in turn, for each
te(ty, 0). It follows that:

R(v)—1, as |v|-w (3.9)

uniformly in all directions, te(ty,0). The theorem of
the variation of the argument establishes then (3.5).

Now, the zeros of B, (v,t), B_(v,t) may wonder to
infinity and their number may change as we move
down in t in (t,, 0). This is possibie, because the phases
of h,(v,t), h_(v,t) as |v]—> o0, veR, are not controlled
in the whole interval (t,,0). However, (2.11) implies,
with the Phragmén—-Lindelof theorem, that ho(v)/v'|
{const for |v|>r>0 in the complex plane. Thus, if
te(t (0),0), in the class &,|h, _(v)|)> const|v| for |v|
large enough, |v|>vy(¢), in the complex plane and
consequently, no zeros may migrate to infinity in this
range. Therefore, we have:

Theorem 3.3. If te(t,(0),0), changes of n,, n_ may
occur only through zeros of R(v,t), 1/R(v,t), for
v {|v|{ v, for some finite v,,.

The continuity of the amplitudes in four real variables
at points of the cut ensures that zeros may leave the
cut v plane only through zeros of h ., h_ at |v|>v,,, veR.
Because of (e2), (s1), such zeros may occur only in a
finite interval (v,,, vo) of the cut.

Now, conditions (s2), (s3) show that, if oe # (¥), n,(t)
is a piecewise constant function having jumps at

different values of ¢, t€(t,(0), 0) and that, knowing n,(t),

we may count the number of zeros of &, (v,t), h_(v,1),
knowing it at t = 0.

If one uses the fact that o, (n*p) # 0 for all v, (s2)
implies that there exists an interval (¢,,0) of values of
t, where both h (v,t) #0, h_(v,t) # 0 for |v| > v,,, veR.
With Theorem 3.2, the number of zeros of h.(v,t),
h_(v,t) is the same on (t,,0)n(t,(0),0) as at t =0 and
this simplifies the discussion considerably. The phrase
“small” |t| means in the following t&(z,, 0). The case of
“large” |t| is deferred to Sect. 6.

3.3 The inverse mapping &£, for small |t|

It is of some advantage to replace the cut v plane by
the unit disk of the z plane, through the mapping (A.2).
We take then in AO(t) the norm (z = %):

ldo| = max[suPolAK+,—,o(9),,

d
*SUpPy EAKt—,o(e) ., supelAf, _ o0
d
"SUPy EAfh—,o(g)\a sup,| F((6)/0],
d
'supg| F,(6)], sup, EAFLz(Q) :| (3.10)

where the suprema are to be taken on the images of
the various domains of definition on |v|>v,, of the
functions in question. Since d6/dv ~ 1/v* for |v|— co,
0— +7/2, (3.7) assumes a very smooth variation of
the observables as v— c0. We have divided off a factor
f in the supremum over F,, because F,(0) ~ 0 as 8 - 0.

We isolate first a subset A O ,(t) of 40(¢), on which
the correct algebraic relations of F,,F, to the other
observables hold; A0 ,(t) inherits the distance from
AO(t).

If te(t,,0), 1/R(v,t) #0 for all v and (2.9,2.10) map
continuously a sufficiently small ball |Ao(t)|| <d in
AQ,(t) into the space AZ of functions AR(6),
continuously differentiable on |z| = 1, with the norm:

]. (3.11)

Verifying the continuity of the mapping A0, > AZ
makes use of the estimates (2.12,2.13).

For further work, it is useful to notice that the
quantities f* +Af*, fo+Afo, R+ AR satisfy the
same inequalities (2.12,2.13) if || Ao|| < const.

It is not true that any sufficiently small ball in A%
is covered by the values of the mapping (2.9, 2.10) since,
e.g. AR—0as 00— + n/2, because of (s1), (¢2). However,
we stick to (3.11) for simplicity.

Since te(t,,0), the function R(v) = R(o;v) obtained
from o(t)(4o(t) = 0) obeys |R(v)| > m > 0. Now, for all
AR in ||AR| <m/2, that are images of points in
AO 4(t), the variation of the phase of R(v) + AR(v)=
R(o + Ao;v) as we move along |z| =1 is the same as
for R(0). This follows from the fact that R(o + Ao; v)— 1

d
|AR] g = maxl:supolARL Supg d_HAR




as |v| - o0; thus, in the R plane, the curve R(o + Ao; 0),
0€[0,2x] is closed and the number of its turns around
the origin is insensitive to small changes of the curve.
We conclude:

Lemma 1. If te(¢,,0) and r is sufficiently small, ns(t) is
the same for all Ao(t) with ||Ao(t)| <.

The point of Lemma 1 is that zeros of h,,h_ may be
counted even if small errors are present, if we are close
enough to an element of .#(¥).

We consider now in A the subset A Z of functions
AR(v) so that (R + AR)(v) is meromorphic in the cut
v plane and obeys (3.6) with at most n,,n_ zeros in

B,,B_ in turn. It is important that: if z&(¢,(0), 0), the
subset A%y contains points of the image in AZ of a
ball |Ao|l <r in AO 4(t). Indeed, Ao =0 belongs to
Ay and we may obtain other points of A%, by, e.g.
slightly displacing the zeros of h, (v,t), h_(v,t) in the
v plane. Let AOg(t) be the set of those elements in
AQ ,(t) that lead, via (2.9,2.10) to points in AZ,.
Notice, AOy contains “isolated” subsets where the
zeros of h,,h_ coincide; there, B, , B_ have less than
n.,n_ zeros. With this, (A.1-A.8) of Appendix A define
a natural action of &, on AOg(t).

In general, the amplitudes &, , h_ obtained this way
are neither holomorphic in the cut v plane, because
the sum rule (A.9) is violated, nor continuous at
v =+ ¥(t), since (A.10, A.13) are not obeyed. However,
they are satisfied at Ao =0 and there are changes of
the observables which keep them intact, away from
Ao=0. We call AOp(t) the subset of AOg(t), where
(A.10, A.13) are fulfilled. We take A Op(t) as the natural
domain of definition of the inverse operator %,.

In the following, we write occasionally g(o + Ao;v)
for a function g(v) needed in the algebra of .&, (e.g.
EY,B,, etc) and obtained from error affected
observables o+ Ao; alternatively, we shall write
glo + Ao;v) = g(v), but g(o; v) = g(v).

We define now P,(— v,,,v,,) as the set of functions
holomorphic in the whole cut v plane and obeying the
same constraints as the class P(— vy, v,,), except for
the continuity of the derivative on the cuts, which we
replace by Holder continuity of the function of any
order less than unity. Then, we have the following:

Lemma 2. The amplitudes h.(v,t), h_(v,t) obtained
through the action of &, on AoeAOp(t) belong to

Pi(— Veps Ven)-

Proof. The dispersion integrals in (A.1-A.8) are all
performed over functions with continuous derivative,
and thus the result is Holder continuous of any order
less than unity (see, e.g. [12]). The continuity at
v= 4+ 9(t) is ensured through (A.10-A.13). We only
have to verify that the phase is bounded, as |v|— co.
But vL,(v) and the phase of B,(v) are manifestly
bounded and thus, according to (A.8), we only have
to verify that the phase of EL (v;0 + Ao) is bounded.
To this end, we use the fact that oe # (%), so that the
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phase of InEl(v;0) is bounded (cf (iv,v) in the
definition of %), and compare
In(E% (v;0 + A0)/EL (v;0))

_a—v)” [ _j + T]ln(l +Af/f. (004

7 v =2 —vi)1?
(3.12)

In the second integral, perform the change of variables
vy =1/¥, v; =1/v so that one is led to analyze the
behaviour of the expression:

W In(l+A4f/f+(v};0)
Fo (v — v = Vi)'
for v, near zero. The integrand vanishes at v{ =0, and
its derivative is bounded there, because of the finiteness
of ||[Ao| and of condition (2.12) on df */dv. Therefore,
the integral itself is bounded and thus the expression
(3.12) is a constant as v— oo, which establishes our
claim.

To complete the specification of the problem, we
give a norm in the image space H of pairs of functions
h,(o+Ao0;v), h_(o+ Ao;v) obtained through the
action of %, on AOp(t). Namely, we define first a
scale function Eg(v) through the requirements: (i) Eg(v)
is holomorphic and without zeros in the cut v
plane; (ii) |h,(V)I/|Es(v)|—>1 as |v|—>oc0, veR; (i)
|Eg(v)] >const >0, as |v|—ov,, veR; (iv) |Eg(v)|
increases for |v|>v,. Further, let D, denote the
interior of two ellipses with foci at (—v(f), —v,,),
(v, ¥(2)) and of large semiaxis |[v—v,|/2+y and F,
the complement of {D, U(|v £ v| <r)} for some small

r. Then, we define:
up |h_(v)|]
"1 |EsO)]

(3.14)

In the next section, we give a theorem establishing
the conditions under which %, is continuous from
AOQp(t) into H.

— v

(3.13)

LA
" |EsO)I”

Iy, h)lg= max[supF

4 Proof of stability for small |#|

This section is concerned mainly with the proof of the
following statement:

Theorem 4.1. Let h, (v), h_(v) be a pair of functions in
P, (— vy, Vo) and such that: (i) they do not vanish on
the cuts |v| > v, veR; (ii) they have n,,n_ zeros in
the complex v plane, in turn; (iii) they lead to observables
0+ Aoy, AogeAOp; (iv) the distance between the zeros
of h, and those of h_ in the v plane is larger than d > 0.
Then, for any ¢ >0 and vy >0, both sufficiently small,
there exists d(g; y) so that, for any other pair of functions
of class Py(— vy, V), hi(v), h_(v), with the same
properties (i)—(iii) and generating observables o + Ao,
A0eAQp, the condition: |Ao— Aoyl <5 implies
lthy —hy, ho—h_)|g<e.
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Before proving this, we make some comments and
show how this statement settles the issue of stability.

(i) The contents of Theorem 4.1 is intuitively clear:
since we have restricted the number of zeros of b, h_
and thus have only a finite number of parameters at
our disposal (roughly speaking), we do expect h,, h_
to be close to h,, h_, a sketch of a proof is also given
in [2]. Here we shail be more explicit concerning the
dependence d(g), in order to show that an error analysis
is feasible in principle and because this topic is not
treated in the literature.

(i) If Aoy =0,1ie. h, (v,t), h_(v,t) are of class &, we
may apply this theorem if te(t,(0),0) (since only if
te(t,(0),0) do we know the number of zeros of h,,h_)
and conclude stability if condition (iv) above on the
zeros of h,(v), h_(v) is fulfilled. Since this is the case
at t =0, there exists an interval (g, 0) where they still
stay apart. Thus:

Theorem 4.2. There exists an interval (tg,0) =(t,(0),0)n
(¢5,0) so that #,:AOp(t)—> H is stable at Ao =0 for all
te(ts(0), 0).

(iii) In an (idealized) experiment, we are given the
value of | Ao(t)— Aoy(t)|| =ey(t). If ey(t) s suffi-
ciently small, we may find the value of ¢, the measure
of the departure of the possible i, h_ from h,, h_
by solving the equation: d(¢; y) = ey (t), where d(;p) is
the monotonically increasing function of & whose
existence is established by Theorem 4.1.

Proof of Theorem 4.1: Writing B(o + Ao; z) = B(z), the
first task is to bound, for z =exp (i9):

= |B-(0) B_(§) s
IB(H)—B(0)|—B+(9) 5.6 <|R(6) — R(9)|
1 ~ 1
. _ - 4.1
|ER(G)IHER(G) ER(H)IIER(G)| (4.1)

with Eg(6) of (3.6). The first term is bounded by
|AR||g/m, m=inf,R(6)>0 and we can make
|AR iz <&, if || Ao| is sufficiently small. Further,
Ex® . |_ ‘ 1+AR(9)
ER(6) R(0)
ex L§COS((¢—9)/2)
P\ 27 sin (6 — 0)/2)
|1+ AR(¢)/R(¢)|
do |—1
"IT+aRORO)]

-1

+ AR(6)

- R(®)
< |AR(6)]

IR(6)]

where 2nAy(0) is the real integral in the exponent,

and AR =R —R. A bound on Ay(6) is obtained in
terms of |AR|, |dAR/df| by means of the inequality,

exp[—idy(0)] — ll

+ 14y (0)| 4.2)

valid for |x|, |y| < 1:
In(11 +x|/I1+y]) S |x — yl/(1 — max(|x],|y])) (4.3)

which leads to:

|AY| =(Cysup|dAR/dB| + 2C, /msup|AR(0)])/m
<const||AR| g = const &,. 4.4)

In the derivation of (4.4), we needed to show that a
constant C, exists so that, for all 6.

do
HRO) = R g7 < o (4.5)
This is done by showing that R(f) is a Holder
continuous function of 6 over the whole circle |z =1
(ie. including + n/2), with Holder index 1 —y. This
follows from (2.13) and the fact that d8/dv ~ 1/v? for
large, real v. Thus, the derivative dR(6)/d0 is conti-
nuous at all 0, except for = + n/2, where it may
diverge like 1/(n/2 — )7, which establishes our claim.
Clearly, in (4.5), C, increases indefinitely if R(6)— oo
for some 8. Thus, | B(8) — B(0)] is uniformly less than
const x ¢;, where the constant increases indefinitely if
inf,[R(6), 1/R(6)]1 0. -

Next, we show that, if |B—B|—0, then
B, —B,|—0 and |B_ — B_|—0. Clearly, this can
be true only at those values of t where B,, B_ have
no coincident zeros. This is assumption (iv) of
Theorem 4.1.

Using | B, _(¢"*)| = 1 and writing B(z) = By(2) B, (z),
where By(z) contains the nucleon poles, we rewrite our
conclusions on (4.1) as: (z =exp (i8)):

|B,(z)— B,(2)|=|B, - (2)B, + (2) — B, . () B, _(2)| <&,
4.6)

and the last inequality is valid at all |z] <1 by the
maximum modulus principle. We drop in the following
the subscript unity to simplify the notation and shall
state explicitly when the nucleon pole (which is
formally inessential) is reinstated.

We wish to derive from (4.6) a bound on the absolute
distance between the zeros z;, _ of B, _ and the
corresponding zeros 7, _, of B, _. Clearly, a precise
answer depends on the detailed positions of the zeros
of B_, B, . However, a general (and correspondingly
weak) solution may be obtained from the Lemma of
Boutroux and Cartan (see [13, p. 461):

Lemma of Boutroux and Cartan. Let P(z)=

[1(z—z)). For any H >0, the inequality:
i=1

|P(z)| > (H/e)" @.7)

holds outside at most n circles, the sum of whose radii
is at most 2H.

This is applied as follows: first, we notice (4.6) implies,
fori=1,2,...,n_



&y 3n+8
B, (z;-)| |B+(Z )l

with z;_ the n_ zeros of B_ and the last inequality is
written for later convenience. Using assumption (iv):

|1§-(Zl-—)|<I (4.8)

1B, (2, )l = [] e —2ael

BT =2z,

s lzi— j+|
> 1] >
ji=1

so that the bound in (4.8) is independent of i. Now,
for any z in |z]| < 1:

~ (z—
|B_(2)| =
H (1-zzt) )
We use now the Boutroux—Carton Lemma to bound
from above the “width” of the domain 2_ where the
inequality
6" ¢,

n-o
z—Z%,_|<2"
il;[ll 13 | d’l+

may hold. According to (4.8, 4.9) the zeros z;_ of B_
belong to £2_. From the Lemma, the sum of the radii
of the (at most) n circles where (4.11) may hold does
not exceed 2e(e;_)"". A similar domain Q,, with a
constant &5, , is obtained containing the zeros of B,
B,. We now choose ¢; (and thus &,) so small that
Q,, £2_ (a) are strictly contained in |z]| < 1; (b) are
disjoint from each other. If, e.g. r_ is the minimal
distance of the zeros of B_ to |z| =1, we choose ¢, so
that 2eey"~(e,) <r_/2 and satisfy (a) Further, we let
g, be such that 2e(ey" + &%) < d/3 and satisfy (b).
With these choices, we made sure that B, (z) #0, if
zef_,B_(z)#0if zeQ,.
Moreover, on the boundary 042_, in view of (a):

= |z— 2| 33-_6"+82 4.12
IB—(Z)l l]_—-[lll ~* I 2n, - d'l+ ° ( ' )

> (d/2f" 4.9

1’[ |z — (4.10)

=g, 4.11)

Also, if zed£2_, in view of (b), (a)

" |2z | _d

B =[] —= 4.13
| +(Z)| il:[1|1_22?+|>6n+ ( )
and we conclude that, on 60Q_,

|B_(2)B. (z)] > ¢,. (4.14)

Combining (4.14) with (4.6), applying Rouché’s
theorem and taking into account (b), we see that the
number of zeros of B _(z) in each connected component
of Q_ is the same as the number of zeros of B_(z) in
that component. Since the diameter of each component
is at most 4e&}"~, we have obtained the desired bound
on the absolute distance between the zeros of B_(z)
and those of B_(z). The argument for B, and B,
runs in an obvious manner. We call ¢,_, &, these
bounds, depending on ¢, . As a consequence, we obtain
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inequalities valid for all v in the complex plane:

- zZ—2z;_ z—%_
|B_(v) — B_(v)| < n_max; 1—zzX  1—z7%
11— 2(v)?|
<2n_g4_ A=r 2"
=es_(V). 4.15)

Reinstating the nucleon pole through a Blaschke factor
By _(v) invalidates (4.15), but outside a neighbourhood
of radius r around z(— v;) it is true that

|B_(v) - B_ ()| <2e5_()/r. (4.16)

Clearly, | B, (v) — B, (v)| obeys a similar inequality.

We now proceed to estimate |k (v) — h ., (v)| for all
v in the domain F,. The inequalities that follow do
not make use of the continuity of h, at v and are
thus too weak, although sufficient to establish stability
with respect to (3 14). With (A.8), we must bound
T,(v)=|B,(v)— B, (v)|, which is already available,
T,(v) = | E% (V)—E1 ()|/1Es(v)] and T,(v)=
lexp [(v, — v?)"/*L(v)] — exp [(v, — v3)*2L(v)]| for all
vin F,.

For T,(v), we write:

|E}|-l exp{(vtzh_VZ)l/z[_—jﬁ N af:'

| Es|
v} 1‘ @.17)

In(+AfL0)/ ()
(Vi — V) =)

where [In(1 +Af,/f )| Sconst||do — Aoyl|/m. It is
expedient to extend In(1 +Af./f.) down to v, by
continuity through a function k(v), with k(v), dk(v)/dv =
O(]| Ao — Aoy |l) and otherwise arbitrary, and then
subtract this contribution. We call E. the outer func-
tion in the cut v plane, with modulus exp(k(v)),
Ve <|v| <V and unity for |v|> 7, veR. For the func-
tion (EL/ELY)Ec(v), the estimates (4.2) may be
repeated, using the boundedness of the derivatives
dAf,/df and inequality (2.12), so that, with the
maximum modulus principle, we conclude that:

EL()
EL(v)

for all v in the complex plane, including the cuts.
Further, in F,:

T,0) =

Ec(v)— 1| < const|| Ao — Ao, || (4.18)

(3=
minaDV|v’—vl
‘140 — Ao, || < C,(0) 140 — Aog || (4.19)

nEc(v)] < Cy

so that:
|Ec' — 1] < const(y)|| 4o — Aoy ||. 4.20)

With a similar argument, | E} |/| Eg| is bounded in F,
by const(y). This disposes of the term T,(v).
For Ts(v), we notice first that, in view of (2.10),

K+4iF, #0 on (v,;,7 and thus Im(K,—K,)<
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const | Ao — Aoy || /(vZ — v3)!/2. From (A.5), it follows
that, in F:

|(v3, — v?)1/2 || Lg(v) — Lg(v)| < const (y) | Ao — Ao, .
(421

The quantity Re(K; — K ) involves phase differences
of the factors in (A.4) and these vanish as v —v,, like
(v—v)*? (cf. (3.10,A.3)). Notice, the phase of EL(v)
has a logarithmic singularity at v=v, but this does
not disturb the bound in F,; one verifies that:

[(v2 = v2)Y2|| L 4(v) — L ()| < const (y) [ Ao — Ao,
+ const (y)g (e + ) (4.22)

where g(e; , ) comes from the Blaschke factors in (A.5)
and vanishes as ¢;, — 0.

Now, putting these bounds together, we may
estimate:

|Es|"’ )R O < T, )5 Ei
exp [(v* = v3)2L] | + Tz(v)B+<v)
o1
Jexp[(2 — 2)1/2L11+T3(v)E B.O)|  (423)

where the quantities multiplying the factors T;(v) are
bounded by const (y) in F,. Clearly, given ¢,y we may
find now &;, and thus ¢ and ||4o— 4oy|| =9, so
that ||(hy —h,,h_ —h_)| 4 <e This ends the proof
of Theorem 4.1.

5 Lower bounds on the magnitude of the interval
(t,(0),0), for small |¢|

The theorem of stability of the previous section is not
yet satisfactory, since it uses knowledge of the quantity
t,(0) for the true observables oe.#(%). This is, of
course, an unknown quantity, if we are simply given
(0 + Ao)t), for te(ty,0), Ao(t)eAO(t).

Assuming the latter, the procedure of reconstruction
for te(t,,0) would be as follows: from the known
amplitude at t = 0, we obtain the value n=n,_=n_,
perform a small displacement of the observables within
the errors e, (z), so that they lie in AOg(t) and then in
AOp(t) and finally use the formulae of Appendix A.
In this process, it may happen that, as |¢| increases,
we find no elements of AOg(z) or AOp(t) in the ball
[Ao| < ey(t); this means that supplementary zeros
have migrated from infinity in both h, (v,t), h_(v,t)
and it is impossible to reproduce R(v, ) with the
minimal number of zeros n, =n_ = n. It may also be,
however, that such zeros appear in both k., (v,t),
h_(v,t) and nevertheless, the agreement of the “mini-
mal” amplitudes (obtained with n, =n_ =n zeros)
with the observables is not bad. If the errors are zero,
then we verify whether the minimal amplitudes satisfy
conditions (V) of Theorem 3.1, and obtain a bound
on their range of validity.

Thus, it appears we should extend Theorem 3.1 to
the situation when errors are present. This we do in
this section, for the case of small |¢|,te(t,,0), where
R(v) #0, 1/R(v) #0,|v| > vy, veR, since the discussion
is simpler.

The first step is to show that conditions (V) enjoy
stability with respect to the distance (3.14) in H. To
this end, we denote by .#,(r) the image in H of a small
ball ||[Ao] <rin AO(t), as described above. We have
then:

Theorem 5.1. Assume h, ,, h_,&5 (r) satisfies conditions
(V) of Theorem 3.1 for all t in an interval (z,0). Then,
all other elements (h,,h_)e % (r), so that ||(h, —h,
h_ — h_ )|y is sufficiently small, satisfy the same condi-
tions (V) for all te(z,0).

Proof. 1t is convenient to introduce first a symmetric
scale function Eg,y,(v, 1), free of zeros in the cut v plane,
and with modulus:

|EsO)| +1Es(= v

|Esi(0)] = : (5.
It is true that, for veF;
+ _ o+
|_C_:_—C“| (5.2)
| Esa (V)

Also, because of (3.2a), in condition (ii), for |v|> v,
veR:

|Ca (v, ) > ¢1 1 Espy ()] (5.3)
where ¢, > 0. Now, it may be shown (see [2,3]) that
conditions (i1), (iii) imply that |C; (v,t)| > const |v|,
for |v| large enough in the complex plane, and thus

that 1/|CJ(v,t)| is bounded by const/|v|. It follows
that the inequality:

|Esn (V)|
|C o)l
is valid in the whole complex plane, outside the circle

|[v|=p (the constant may be different from 1/c,).
Therefore, in that domain:

(O {UI
|Esi()|  [Esp (W) const
so that C* is also nonvanishing outside |v|

small enough, i.e. condition (i) is fulfilled.
Further, for veF,

|[vB* —vB+|
] < const X & (5.6)
Esul
and, using (5.3), we may evaluate directly
lvBS| [vB*|
ICIlICT
so that, if ¢ is small enough, condition (ii) is also
fulfilled. Finally, (5.2) implies a similar inequality for

< const (5.4)

—£>0 (5.5)

=p, for ¢

< const X & (5.7)




the moduli |C}|/|Esy!> |C* /| Esyl- Then, the cosine
rule, together with (5.3), gives:

cosy >1—const x & (5.8)

where V is the angle of C; with C*. Thus, condition
(iii) is also fulfilled.

We can now state a theorem concerning the approxi-
mation of the true amplitudes, which is the main result
of this note. It is stated for the interval (¢,,0), although
it is valid down to large |t|, as will be shown in the
next section.

Theorem 5.2. Let (h,,(v,t), h_,(v,t)) = Z,(0 + Ao(?)),
oeM(S), for all te(r,00=(t,,0), and let
SUDe(r, 0y | A0(8) || = ¢. Assume (i) the zeros of hy (v, 1),
h_,(v,t) in the complex v plane stay a distance d >0
apart for all te(t,0); (i) h.,(v,), h_,(v,1) satisfy condi-
tions (V) of Theorem 3.1 in (t,0). Then, if 3, is suffi-
ciently small, h,,(v,t), h_,(v,t) depart from the true
amplitudes of class &, (h, (v, t), h_(v,t)) = Z,(0), by less
than ¢ in the norm (3.14), where ¢ is the root of
d(e:y) =06, and (g y;h,) is given in Theorem 4.1.
(te(r,0)).

Proof. We simply put together Theorems 5.1, 4.1
and 3.1. Indeed, we choose first g, so that conditions
(V) are satisfied for all h,, h_ with [[(hy —h.,,
h_—h_,)|ly<eo. Then, Theorem 4.1 gives us
8(e0;7; ha)s (if & 1s small enough), so that, if | Ao(f) —
Aoy(t)| < 8(), then (h,,h_)=L,(0+ Ao) obeys
conditions (V). Assume now J,<d(gy). Then, the
action of &, on oe.# (%) leads to functions k., (v,1),
h_(v,t) satisfying conditions (V) for all te(z,0).
Comment (iii) in Sect. 4 ends the proof.

6 Stability at larger |¢|

In this section, we show how to get rid of the
assumptions R(v,t) #0, 1/R(v,t) #0 for |v|> v, and
obtain essentially the same statements as in Sects. 3, 4.
We consider the situation where, at some point
(Vos o) Vol > Virs A_(vo,to)=0, h_e¥, and thus
R(vy,t,) = 0. Small errors {|Ao| of the observables
alter the position of the zero of R + AR or remove it
altogether. According to (s3), if # >0 and sufficiently
small, h_(v,to+n) #0, h (toxn)#0 for all
|v| > v,,, veR; it follows that, if r is small enough, the
quantity

An = nylto — 1) — nsto +1) (6.1)

is the same for all |Ao(to £7)| <r. This defines a
minimal change An _ of the number of zeros of h_ (v,1)
in the complex v plane, as we move down in ¢ past
t,; this is the actual change if te(t,(0),0). The inverse
operator %, is defined as in the previous section; we
pick out first a subset AOg,(t) of AO(r), on which
R(v,1),(2.9,2,10), has n, poles and n_ or n_ + 1 zeros;
we append now to the definition of AOg,(t) the
condition (z): for all Ao(t)eAOg;(t), (R+ AR)(v,?)
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obeys (s5) with the same constants. This restriction
allows a control on the behaviour of In(R + AR)(v, 1)
near the zeros of (R + AR)(v, t). Further, we define &,
on AOp, (t) = AOg,(t), as described in Section HL

In the following, we consider only the case |vo| >
#(t), so that f_(ve,t,) =0 and shall leave the situation
Vi < |vo| <V out, since it does not lead to different
conclusions but to a more complicated algebra. Also,
we discuss only the case An_ = 1. The main concern
is a generalization of Theorem 4.1 on stability to the
present setting; the difficulty is the quantitative des-
cription of the fact that the influence of the possible
supplementary zero in the amplitude & _ with respect
to h_ is arbitrarily small if the errors around o(t) are
correspondingly reduced. Essentially, this comes about
because the extra zero is very close to the cut and the
values of the amplitudes h_, h_ on the cut in this
region are themselves small. Thus, although the phase
of h_ is very different from that of h_, the absolute
error is small.

We prove the following:

Theorem 6.1. Let h_(v), h_(v) be a pair of functions in
P (— Ve, V) and such that: (i) h,(v) #0 for |v]|> vy,
veR, but h_(v) may vanish at most once at
Vo, |Vo| > W(t); (il) h(v) has n, zeros and h_(v) n_ or
n_+ 1 zeros in the complex v plane; (iii) they lead to
observables o + Ao in AOp,(t); (iv) the distance between
the zeros of h..(v) and those of h_(v) is larger than d > 0.
Then, for any & >0, y > 0, both sufficiently small, there
exists 8(g;y) so that, for any other pair of functions h , (v),
h_(v), with the same properties (i)-(iii), generating
observables o+ Ad(t), Ad(t)eAOp,(t), the condition
|Ao—Ad| < & implies ||(hy —h,,h_—h_)|g<e.

To prove this, we take first some preparatory steps:
(i) Let z, = exp(i®,) and consider two disks d, of
radius p, centered at zy, z§. Then, for any £>0,p >0,
there exist r,(; p), A @(g; p) > 0 such that, if 0 <r <ry,
|®@— &y <AD, the Blaschke factor B(z(v)) with
B,(z=1)=1 and zeros at (1 —r) exp(£ i®) obeys:

[1—By(z(v)| <& (6.2)

for z in |z] < 1 outside the disks d,,.

Denoting by B, , , B, _ the factors with zeros at (1 —r)
exp(+i®), (6.2) follows from the (straightforward)
inequality:

11— By, B, | <|€®+ By, (2)| +]e™* + B,_(2)] < 24p/p
6.3)

valid if u/p < 1/4, p <2, if z lies outside two disks of
radius p, centered at z,,z¥ and the zeros of By, -
inside two disks of radius p, centered at z,, z§.

(ii) For definiteness, we assume that h_ contains
one more pair of zeros than h_ (the other possibilities
are similar or simpler). Then, (A.4,A.6, A.8) show that
h_ differs from h_ by a factor
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_ =2 2312
ns(v)=Bs-(v)exp[—(v‘2" "2)2(; v) ]

f Amin BB /1),
30 = VR =y =)'
= B,_(ve,- 1) (64)

and it is convenient to estimate [h_ — h_| through:

lh- () —h_()| < [h_() = 7, (v)h-(V)]
+[m(Wh-()—h_)l. (6.5)

(iii) for any ¢>0, y>0, p>0, po>0 and suffi-
ciently small, we may find »,A®, such that, if the
two new zeros lie at (1 —ryexp(+i®) with 0 <r <r,
@ — @y| <AD, then | (v)— 1| <¢ in the domain F,,
outside the images through v(z} of two semidisks of
radius p centered at exp(+i®,) and outside a circle
of radius |v| = p, around the origin.

Indeed, (6.2) implies that |Im In B,(z)] may be made
as small as one wishes on the interval (0(— ), 6(v)),
z(v) = exp(i6(v)), by letting the zeros get close enough
to |z| =1, around any @,, outside this interval. Thus,
le;_(v) — 1| may be made smaller than ¢/2 in F, minus
a disk of radius p, around v = 0. Another term &/2 is
obtained from (6.2), by possibly choosing the zeros
even closer to the boundary. This justifies (iii).

(iv) Let m be a number, to be thought of as small,
but independent of ¢, and such that (s5) is true. Assume
there are points v,|v|>¥(t), veR, where |Ex(v)|=
|R(v)| <m. If m is sufficiently small, there are just two
intervals on the unit circle: (61,6)), (—07, —6,)
where this occurs, in view of (s3). Let further (9',0") o
(61,07) be an interval where | Ex(0)| < 2m (also unique
in (0,7)). Then, if @ is outside (6,0"yu(— 0", — 0'):

Ex(®) _ |
ER(6)
& C " ’ 81/2ﬂ,
<ﬁ+|:31cl +\/6:W2(01_01)+C3 lm :|

(6.6)

Equation (6.6) is the analogon of (4.2): the first term
is the bound on | AR|/|R}; the bracket bounds | Ay(0)].
In the latter, the integral over ¢ is divided into two:
one part over the whole circle minus the intervals
01,07), (—67,—0)) and its complement. The first
part leads to the same bound as in (4.4). In the second
part, let I be the interval, if it exists, where |[R(v)| < \ /2, ,
with ¢, <m?/4; by (s5) and the conditions on AQy,,
mes(I) < Ce!/?f. Then, for ¢ in I, the contribution
Ay (0) to Ay(0) is:

1 [In|(R + AR)(9)|l +|In| R(e)]|
2y |sin (0 — ¢)|

1]AR(6)| do Cs 1w
= IRO)| £|sin(9—¢)|< m?e

|4y, | < d¢

8 _Copp g
+C42m<me1 , B>8 (6.7)

where we have used the inequality: mes(6),60')>
m/supy|dR/d0)|, a consequence of a mean value theorem
and used (s5) to estimate the logarithms, since
IR+ AR| < m. Finally, in the complement of I in

(¢,8), it is true that |In|1 + AR(¢)/R(¢)|| < 2./&;, 80
that we obtain the middle term in the brackets of (6.6).

(v) With (6.6), we can estimate as in (4.1) the
difference |B(@)—B(0)|, for 0 outside (¢,0")u
(—0", -0

|B(6) — B(0)] < &5(e,) (6.8)

with the same notation as in (4.6). For 8e(¢',0")u
(— 6, 0), we take simply:

|B(6) — B(8)| < 2. (6.9)

With this, the following analogon of (4.6) is true
(omitting the nucleon pole):

IB.(2)B_(2) - B_(2)B.(2)| <& “"™(°*"  (6.10)

where we have used Nevanlinna’s inequality and
w(z;m) is the harmonic measure of the intervals
(0,6 u(=0", — 8.

(vi) In (6.10), B_(z) contains one zero more than
B_(z). We:show now that, for ¢, small enough, the
supplementary zero of B_(z) lies in a domain DS,
bounded by the arcs (+ &', + 6”) and the level line:

B(zlfm(Z;m)) (2)10{2;"1) =k, (6.11)

where kg, > 0 is independent of ¢, and will be specified
below. Since 0 < w(z;m) < 1 in |z| < 1, the curve (6.11)
consists of two arcs with endpoints at (#,6"),
(—0",—0) in turn; as ¢, -0, the area bounded by
these arcs vanishes.

Let r_,r, be the minimal distances of the zeros of
B_,B, to the boundary and consider the disk |z| =
1—r,/2. Let &,(g,; 7, ) be the maximum of (6.10) over
this disk. As &, — 0, it vanishes like a power of ¢,. We
repeat now the reasoning of Theorem 4.1, (4.7-4.11)
and conclude the existence of a domain 2., which
contains all the zeros of B,,B, and made up of at
most n circles, so that the sum of their radii does not
exceed 2eel/n+(2,); we may choose &, so small that
£, is completely contained in the disk |z|=1—r, /2.
Letthen r' =min(r_,r, /2);if kg = (r//2)" *"+, it is true
that, on the circle |z| =1—+/2,

|B_(2)B . (2)] > ko, (6.12)

Let now &, be so small, that the line (6.11) lies outside
the disk |z| = 1 —r'/2. Then, since B_, B, do not vanish
outside this disk in |z| <1 and have unit modulus on
|z| =1, (6.12) is valid also along the closed curve made
up of the complement in |z| =1 of (+ &', + 68”) and the
arcs (6.11). It follows that, along this curve:

B+(2)B-(2)—B_(2)B,(2)| <|B_(2)B. (2. (6.13)



Rouché’s theorem shows then that the number of zeros
of B_(z) inside the domain bounded by this curve is
the same as that of B_(z). This proves our point.

(vii) In Theorem 6.1, we do not require that h_(v,?)
vanishes somewhere for |v| = 7(t) (of course, it may);
if it does not, then |h_(v,f)| >m >0 and we may find
gm)>0 so that, if e<e(m), the ratios Rv)=
h_(v)/h..(v), corresponding to amplitudes which differ
in the norm (3.14) by less than ¢ from h_,h,, have
the same variation of the phase around |z{v)|=1 as
R(v)=h_()/h,(v). Thus, the freedom of allowing one
more zero in h_ (v) is not relevant. More accurately,
the distance [(h_ —h_, h, — h.)|ly has a lower
nonzero bound g5 > 0 if h_ has n_ + 1 zeros, but may
be made vanishingly small if only n_ zeros are used.
However, it may be that g5 is very small, much smaller
than a realistic level of errors ¢,. Then, it is of interest
to estimate d(g,), using both n_ and n_ + 1 zeros.

Qualitatively, we expect &g to play a role if |h_(v,t)|
is small somewhere, compared to the expected level
of errors g,. In the following, we assume that &, is such
that there exist intervals (v,,v3)c(vy,v])c(V, V')
so that |@(V)|=|h_(v)/Es(v)| <&o/8, §o/4 or £4/2 in
turn inside them; outside them, | @(v)| is bounded from
below by a positive constant, which we take equal to
£0/2, for simplicity.

This ends the sequence of preparatory steps.

We now proceed to estimating d(gy), so that, if
lAol <d(eo), N(hy—hy, h-—h_)llg<ke, with
k= 0(1). First, we notice that there exist two domains,
both denoted by d(e,) in |z(v)] <1 and with part of
their boundary on (z(v'), z(v")) and its complex
conjugate, so that {@(v)| < gy/2, if z(v)ed(g,). Indeed, let
2C > ¢, be such that |@(v)| < C, for |v|>v,,. Then,
Nevanlinna’s inequality for @(v) implies that d(eg)
includes the domain where the harmonic measure of
the interval (z(v}), z(v{)) is larger than (In(g,/2C)/
(In(gy/4C). Consider now, for each ve(v,v”), the
greatest disk d(v):|z — z(v)| <r so that d(v}n{|z| < 1} is
contained in d(g,). According to steps (i), (iii) above,
for every d(v), there exist values r,(v), @,(v), such that,
if the zeros of B,(v) lie in d(z;v):{z|z = (1 — r)exp(i¢),
¢ —6(v)|<¢;, O<r<r;} and in the conjugate
d*(z,; v), then the inequalities:

ok les(v) — 1|<ZE (6.14)
hold, the former in the cut v plane outside d(v)uw d*(v),
the latter in F, minus a disk |v| < py. With this, it is
true that, if the zeros of B(v) lie inside D(z,) = u,d(z,; V)
and D*(z,), the inequality:

(- (v) — h-I/|Es(v)] < 3eo/4 (6.15)

|B(v)—1|<4

holds for all v in F, with {v|>p,. Indeed, outside
d(gy) = U (d(v)ud*(v)), it is true that | (v) — 1] < gy /(2C)
and |@(v)| < C from the theorem of the maximum
modulus. Inside d(g,), | @ (V)| <e&o/2, |B,(v)] <1 and
thus |z, (v) — 1| < 1 + &,/(4C) < 3/2. This justifies (6.15).
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Now, choose m=¢,/8 in comments (iii}—(vi).
According to comment (vi), for ¢, small, (as described
there) the zeros of B,(v) are contained in the domain
D, =CD,n{|z| <1}, with k, determined by the
positions of the zeros of h_,h, (h_ has only n_ zeros).
Since (8',07) = (6(v,), 0(v5)) < (B(V), 6(v"), it is true
that, for ¢, small enough, DS, = D(z,) of the foregoing
paragraph. This is the first condition to which &,(g,),
and thus 6 = || Ao || is subjected, in order to fulfill (6.15).

We now write h_(v) == {(v)h, _(v) and shall estimate
the difference |k, _ — h(v)|/|Eg(v)|; the factor my(v) is
bounded by |m(v)] <1+¢0/(4C) in F,n|v| 2 po. This
proceeds in a manner similar to Theorem 4.1: we have
to place bounds on the three terms T;(v), i=1,2,3 in
the analogon of inequality (4.23).

Consider first T, (v) = | B_(v) — B (v)| where we have
written B_(v)= B (v)B,(v). We repeat the steps of
(4.8-4.16), changing the unit disk with |z]<1—7r/2
and ¢, with &, = the maximum of the rhs of (6.10) over
its boundary; We allow for the factor B,(z) explicitly;
on|z|=1—-r/2:

B, (2)B° (2)B.(2) — B_()B, ()] <&; (6.16)

If we choose ¢, so that D, lies outside |z| <1 —1r'/2,
it is true that:

1/r_\* 1/r\?
so that (4.11) is .replaced by:

. 6"+ &
H(Z_Zi—) < I r 22—33 (e2)- (6.18)

2n_+6

We may choose then 2_,0, so that they are even
contained in |z| < 1 — 37'/4 (cf. comment (vi)), so that,
on the boundary 0£2_ of Q_, |B,(z)|>r%/2° With
this, we conclude as in Theorem 4.1 that, for all v in
the cut v plane, including, the cuts:

|BO (v) — B_(v)] < 2&5_(g,)/r (6.19)

(we have ignored the trivial complication due to the
nucleon term, cf. (4.16)). We may now choose ¢,, so
that the right hand side is less than ¢,

We now move on to T,(v)=|EL(v)—EL()|/
|E4(v)]. We take over the argument of Theorem 4.1 on
this point and have to estimate the left hand side of
(4 18). Now, f_(v) becomes small at some_points; as
in comment (iv), we may give a bound on |EL (v)E,(v)/
El(v)— 1| outside an interval (v, ”) inside which
|EL(v)|/|Es| < &o/2. The inequalities in (s5) for R(v)
may be transferred to f_(v) since f, (v) > k > 0 at those
points where f_(v) may vanish. In (6.6), we replace
then ¢, by ||Ao|| and choose the latter so that the
right hand side is less than ¢,. Finally, inside (v',v"),
we choose | Ao|| so that |EL (v)|/|E5(v)| < &, and thus,
on this interval:

|EL)]
| T,(0)] < Es0)| +

|EL()|
| Es(v)|

<3ey/2. (6.20)
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There is no change in the argument for T,(v).

With this, we have shown how to choose 40| to
ensure |h_ —h_ I/IES|< ke in F m(|v|>p0) Since
(h_(v—=h_ ()/Eg(v) is holomorphlc in |v| < pg, this
choice ensures the inequality in all of F, and ends
the proof.

Notice, the argument in Theorem 5.1 is independent
of whether the values of |t| are small or not and thus,
using Theorem 6.1 instead of 4.1, we obtain the
statement of Theorem 5.2 without the restriction
te(t,,0) (however, h_(vy)=0 is possible only for
[Val > ).

7 Conclusions

We have presented an analysis of the stability of the
reconstruction of the N scattering amplitudes from
polarization and differential cross section data, under
small displacements of the latter. The procedure of
reconstruction uses isospin invariance and analyticity
in the energy at fixed momentum transfer and may be
summarized as follows: at each fixed t, at zero errors,
the data determines, via the ratio R(v), (2.9-2.10), a
minimal number of zeros of the two amplitudes h , (v,1),
h_(v,t) and their position in the complex v plane;
knowing these zeros, the algebra of Appendix A
produces two corresponding “minimal” amplitudes
h.o,h_o. The ambiguity consists of possible supple-
mentary zeros, the same in h,, h_; this corresponds
to the possibility of multiplying both minimal
amplitudes h,q,h_, by the same factors (in any
number) 7 (v), (6.4); all observables are left unchanged
in this process.

In [2,3], we give arguments that, for some interval
(t,(0),0), such factors are absent, if the amplitudes
belong to the class %, Sect. 2. Clearly, one can formally
obtain “minimal” amplitudes for any interval of values
of t; Theorem 3.1 gives a way to verify whether the
functions so obtained are the correct amplitudes or
not. Its proof uses assumption (rl) in the definition of
the class %.

Now, the minimal amplitudes h, o, h_, are stable
under small displacements of the data, provided these
changes are such that the number of zeros stays the
same in both amplitudes, and that the zeros of &, 4 in
the complex v plane are sufficiently far apart from
those of h_,. This is intuitively clear, is expressed in
a precise manner in Theorems 4.1 and 6.1 and disposes
of one part of the problem of stability.

On the other hand, if errors are present, one may
accommodate within any given error channel functions
R(v) with wildly varying minimal numbers n,,n_ of
zeros and poles. Only the difference n, —n_ may be
obtained from the variation of the phase and the
problem is to obtain the correct numbers. They cannot
be derived simply by continuity with respect to f,
because noncoincident zeros may appear in h, h_
from infinity, as we move down in t. It is the merit of
the restrictions imposed in the class &, in fact of the

experimental fact (s1), that this occurrence is forbidden
as long as conditions (V) of Theorem 3.1 are satisfied —
at first for zero errors only. In the class &, the minimal
number of zeros is obtained from the variation of the
phase of R(v), which is a quantity stable under small
fluctuations; if (V) is fulfilled, the corresponding
minimal amplitudes are also the correct ones.
Theorems 5.1 and 5.2 show that these statements stay
true even in the presence of errors and conclude the
discussion of stability.

In principle, the analysis of this paper gives a way
to estimate the errors of the reconstructed amplitudes,
given sufficiently small errors of the data. One should
stress, however, that these bounds are of purely
theoretical interest — it is, in fact their existence that
matters — and they are of no numerical relevance for
practical phase shift analysis. The latter is a process
of great complexity, especially in its contemporary
form, which incorporates, e.g. in 7N scattering, a larger
number of constraints than was mentioned here — i
particular the unitarity of the partial waves. It is the
impressive achicvement of the work described in
[14,15] that one is nowadays in the possession of
amplitudes, reproducing all available data, and con-
sistent with the fundamental theoretical requirements
of wunitarity and analyticity and with isospin
invariance. The present work - together with that of
[2,3] - shows that, within acceptable assumptions, the
phase of the amplitudes is not merely fixed, but is, in
fact, overconstrained by these requirements.

Appendix A

The formulae for the reconstruction of amplitudes

If the zeros v; in the complex v plane of, say, h_(v,t),
are known, then one defines successively:

_1=z(vp)z(v) (o 2(v) —2(v)
B.(v)= z(v) — z(vg) H 1 —z(v)z*(v}) (A1
with
\/V+Vth \/vth'—v
A2
\/v + v+, A2
and vy = (Qu? — t)/4m;
in 3 = Y20 [ J o+ T]
Inf,(v) Y (A.3)

. (v =) /v? —v,h

where the root in front of the brackets is positive for
V| < vy for vy S v < W(0):

K. (v) _
~ R(v) + 4iF,(v) _
1“[23+(v)3 TE (v)El'(——v):I/V e

(A.4)




where the logarithm is computed by continuity from
threshold. The possible ambiguities of 2nni appearing
if the argument of the logarithm has zeros (it cannot
become infinite) are removed by the sum rule (A.9)
below. Further,

1 “ImK
Ls(v) —2—%—?1‘,_—’;(;) (A.5)
and
J2—v2) (2 — (1))
L,v)= 5
g N —
2 (7 — v OE =) — ()
Now, if
L) = Lg(v) + L ,(v) (A7)
then
hy(v)=B,(EL(Wexp[/vs—v? L] (A.8)

achieves the reconstruction of s, . The analyticity of
L ,(v) in the cut v plane requires:
72 Re K, (v)dy

j ' hey! r ! =
2N O =)o —v3)

We also have the condition that h(v), as defined
by (A.8) is continuous at v = ¥; in particular:

In|h,(+7)

(A.9)

Im L(v) > o (A.10)
vi—v
as v— 4+ . But, as v+ 7,|v[ < |V]
Im Ky (3) et P OAED gy
ALY 2
Using (A.7,A.5), (A.10) implies:
1 lh(V)|
ImL,¥V)= In A.12
D= = (412
We also require:
d d
ImL(v)—» 1nf+(v—-+-v) (A.13)

dv

as v— + 7. Equations (A.10,A.13) are sufficient to
ensure that the real part of &, (v) is Holder continuous
of any index less than unity at v = + v. The continuity
of the derivative itself is not guaranteed, unless, of
course, oe.#(&). We do not need, however, this sort
of continuity in the definition of the inverse operator
&, in Sect. 3

Appendix B

On a dispersion integral
We consider Ex(v), (3.6). It is true that:
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In By =3 [ f'"+v£ ]

In R(v)

.v (v —v)/v? —v,,,

Since B, (v), B_(v) have limits and R(v) - 1 as |v|— o0,
veR, it follows that In Eg(v) tends to a limit as |v{ — oo,
veR, and lying, say, above the cuts. Since |Ez(v)| =1,
this limit is purely imaginary, say i @,. If we can show
that |[In Ex(v)| is bounded in the whole cut v plane,
then it follows from the Phragmén—Lindelof theorem
that In Ex(v) tends to i @, uniformly in all directions,
O<argv<n(and to —i®, in —n <argv <0)

There is the following (superficial) difficulty in
showing that (B.1)is bounded. In view of the inequality
(3.7), the following bound on the two dispersion
integrals in (B.1)—denoted by I(v)—is easily derived:
(v=1vle)

const |v|

1)< [v] ]sinBI'

We have to dispose of the factor In|sin8|. Let M be
an upper bound on |InEg(v)| on the real axis and
consider a contour made up of a semicircle of radius
R on which (B.2) holds and the interval (— R, R). It is
true that:

[vI(¥)| < §0G/an(v,v)b(v)dv (B.3)

where b(v) contains the various bounds and G(v,v') is
the Green’s function of the domain enclosed, with pole
at v and vanishing on the boundary. But G(v,v") <
Go(v,v') where G, is the Green’s function of the disk
of radius R:(v = re™,v = Re').

oGy, , 1 R*—r?

—V)=— .
on 27 R? —2Rrcos(0 — y) + r*
Thus, for |v/|=R, it is true that 9G/dn(v,v) <
0G,/0n(v,v'). With (B.4), one verifies directly that the
part of b(v') containing In|sin 8] gives rise to a constant
in the bound (B.3). It follows that |vI(v}| is bounded

by a constant (M) uniformly in 0 <argv <m. This
entails the boundedness of |In Ex(v)].

(B.1)

(B.2)

(B.4)
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