-146-

APPENDIX
On the Duffing equation at large forcing and damping
by L.S. Stefanescu

Abstract: We present a theorem derived by the author [9] concerning the asymptotic
behavior of Duffing’s equation at large damping and external forcing.

In general, the periodic solutions of the Duffing equation
x* +2Dx’ +x3=Acost, AD>0 (A.1)

may be unambiguously continued to neighbouring values of A,D. There exist, however,
curves D=D c(A) in the A,D—plane across which their number and their stability properties
change. A survey of the behavior of the periodic solutions at these singularity lines has
been given in sect.2.4 and results of numerical calculations were discussed and shown in
figures in sect.6.2.

This picture is clearly too complicated for a global analytical description at intermediate
values of A. Also, with one exception, the literature appears to contain no a priori results
concerning the domains in the A,D—plane where eq.(A.1) possesses a unique, symmetric
solution: using a result of Cartwright and Littleton, W.S. Loud [16] showed (see 0’MALLEY)
that if an harmonic term kx is added in eq.(A.1), then this equation admits a unique peri-
odic solution at every fixed A, provided D is large enough, with essentially D>const(k) A.

In [9], the author considers the case when both A and D are large. It turns out that in this
limit, eq.(A.1) simplifies so that on the one hand its solutions may be approximated in a
controlled manner, but on the other hand it stays complicated enough to display a non-
trivial bifurcation structure which is the asymptotic form of the picture found in numerical
calculations at intermediate values of A. A precise description of the domain of uniqueness
in the A,D—plane, for A large enough, is obtained as a corollary. To state the result of [9],
let D=D(A) be a monotonically increasing function of A. It turns out that the behavior of
the solution of eq.(A.1) depends markedly on the choice of D(A). The following is true [9)].
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Theorem: Let D=D0(A) with

1 1
D (A) = o= 1(A) - 1= &0 tn(A) + C_ + o(&E0{A), (A.2)
where C is a constant, numerically accessible (see below).

Then:
a) f A is large enough, eq.(A.1) admits of a unique, symmetric solution if
D>D (A).

b) The maxima D,lp, and Dll:F of the turning point and pitchfork singularities

(p=1,2,...) interlace and lie, for A large enough, on the curve D=D (A).

c) The positions of the maxima of the singularity lines are equidistant in the
variable A1/3 with a spacing

oA = (App) 3 — (A3 = (g )P - (ap )" = T2 01
/2
1= J Isin t|1/34¢ (A.3)
—x/2

d) The half Poincaré map, eq.(2.1.1),

p: x(—7),x’(—nr) = —x(0),—x’(0) (A.4)
is asymptotically equivalent to the (one dimensional) mapping of a circle into itself

II: x — fcos(x+X) (mod 27) (A.5)

with 8, X known functions of D and A (see below).
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It is true that

f= X -mD) (A.6)
(D/ATT)

where K is to be obtained from some special solutions of eq.(A.1) and of the variational
equation around them [9], in a numerical manner (more precisely: K=lim K(A,D) as
A—o00, and this limit exists and is bounded [9]). Eq.(A.2) is simply the solution with
respect to D of the condition

f(A;D)=1. (A.7)
It turns out that to leading order in A

/2
5 =al3 jﬂ 1sin t|1/3a1 | (A.8)
-7/2

and eq.(A.3) corresponds to %) = .

It is a simple exercise to show that the mapping (A.5) has a unique fixed point for <1 and
all ¥ and that it possesses infinitely many turning point and pitchfork singularity curves in
the §,X plane, with a period 27 in X.

It is worthwhile explaining in more detail the equivalence of p, eq.(A.4), with II, eq.(A.5)
for A—oo. First, it is easy to see that the periodic solutions of eq.(A.1) are, in some sense,
close to (A cos t)l/ 3, at least away from t= — n/2 (cf. sect.3). Thus, for the study of
periodicity, we concentrate on the departures v of x from (A cos t)1 3 (for [t+7/2]| not too
small). With this, it turns out that the natural independent variables for the problem are

—r/2 t
07 =8 Al J(cos t’)1/3dt’, Op =V Al/3 J(cos t’)ll?’dt’ (A.9)
t —7[2
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(L, R for left and right). Writing then p as (v,dv/d®y) (t=—-7) — (—v,—dv/dG)R) (t=0), it
is shown in [9] that the only invariant sets of p (those containing in particular the fixed
points) lie, for large A, in a disk of radius

R = exp(-Dr/2) A~1/8 (A.10)

centered at the origin in the (v,dv/d®) (t=—=) plane. Under the action of Duffing’s
eq.(A.1), this disk is mapped (by p) into some area of magnitude R2exp(—27D). If D~fn(A),
this area is, for large A, contained in a thin annulus around a circle of radius R R, with R,
numerically computable. The thickness of the annulus vanishes as A — 0o. Thus, the fixed
points of p and of its iterates are given in this limit by a mapping like (A.5) of a circle into
itself.

The methods used in deriving the results of [9] are taken from boundary layer perturbation
theory (0’MALLEY, SMITH) and from the averaging theory of oscillations (BOGOLJUBOV-
MITROPOLSKI, SANDERS-VERHULST).

In [14], J.G. Byatt—Smith derived by somewhat different methods asymptotic expansions
for the solution of eq.(A.1) in the limit A—oo with D held constant. These are formally
similar to those of [9]. Unfortunately, this limiting situation requires for its treatment
extensive numerical computations.

Finally, we note that if D(A) increases more rapidly than a logarithm, several possibilities
concerning the behavior of the unique, periodic solution as A—oo may occur. We refer to
[8,17] for a detailed discussion.
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