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Abstract: We present a study of the periodic solutions of Duffing's$ equation:
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[ & 3 )
y+24a y+y = cos t
for large values of the parameters A, | e show that, if A increases
. . 'l
monotonically as a function of |/ and

lim 1n ¥ /A(P) =0
oo

. i . . . . . - .
the equation admits of a unique reriodic solution for | large enough. Ve

wl

present arguments that bifurcations occur if A(P) ~ const In I°.
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I. Introduction

We consider the Duffing equation:

y+2 A 3+ y3 = I cost LA >0 (1.1)
As is well known (see Refs.l_3 ), this equation may exhibit a large variety of
periodic solutions, not necessarily of the same period as the driving force, and
whose number and appearance changes with the values of the parameters & and [ .
According to numerical evidence (see e.g. Ref.z, Fig. 1), the situation simplifies
if the damping is large enough, at fixed [ : the equation admits then of a unique
periodic solution. We notice that, if (l1.1) has only one periodic solution yP(t),
then yP(t) has period 23  and its Fourier series contains only odd harmonics.
Indeed, yPl(t) = - yP(t+37 ) is also a periodic sclution of (1.1) and it is, by
assumption, identical to yP(t).

Now, with one exception (Ref.a), the literature appears to contain no state-
ment describing the region in the plane of the parameters [,A where (1.1) admits
of a unique periodic solution. In Ref.4, W.S., Loud shows, using a result of
Cartwright and Littlewood (Ref.s), that, if an harmonic term +ky 1is present in
(1.1), then (l.1) has a unique periodic solution at every fixed [  , provided A
is large enough (essentially A > const | ); the theorem of Ref.5 is, however,
not readily extensible to the situation k = 0.

In the present paper, we consider the case when both A ,I” are large; speci-
fically, we assume A increases monotonically as a function of | and becomes
unbounded as | —« . Two problems may be raised in this connection: (i) to obtain
conditions on A (") so that, if [  is large enough, eqn. (1.1) admits of
a unique periodic solution; (ii) to determine an asymptotic expansion for this solu-
tion.,

We give next a short qualitative description of the results and introduce the
notation. We define:

x=y/ [ , t =t -39/2 (1.2)

so that eqn. (1.1) becomes:

£ x + 2 /« x + x3 = sin t (1.3)




with 7 ,
£=1/1%3 . p=er?s - (1.4)

and drop from now on the bar on t.

~2/3

1f, as € — 0, *-4/h = const # O (i.e, & ~ ) ), eqn. (1.3) reduces in

this limit to:
. 3 .
2 /40 X + x7 =sin t (1.5)
which may be shown to admit of a unique periodic solution xPo(t) (cf. Sect. III),
It is then easy to show that (l.1) admits of a (unique) periodic solution of the

form:

(£) = x, (&) + ¢ x. . (£) + .00, (1.6)
*p Po Pl

and whose terms are obtained by iterafing formally eqn. (1.4). However, if /A — 0
as £ — 0, eqn. (1.3) reduces to

x> = sin ¢ (1.7)
with the solution

1/3 (1.8)

x () = (sin t)
Now, corrections to xoo(t) for small £ may no longer be obtained as before (in
eqn. (1.6)), since the derivatives of xoo(t) at t = O are not finite. Thus, we
expect a first change in the behaviour of the solutions of eqn. (1.3) as we cross
the "asymptotic line" /t ~ 4, ie. A~ f72/3 .
If A< f‘2/3, (the symbols <, ba s ~ mean 'asymptotically smaller, larger

. ' . .
or equivalent to'), we attempt to obtain a boundary layer correction to xoo(t)

near t = 0, Letting
1/5

t=/«3/52 ,x=/L 7 (1.9)

eqn. (1.3) becomes:

2, 6/5
£ 47 d- 3 _ 1 . 3/5, _ . _ 3
~575 ;-_32 + 2;—-22- + 7 = /237-5 snx(?/— ) =¢C /b6_ T 4+,
/* ; (1.10)
3/5

), we may balance the restoring and

We notice that, in a boundary layer of 0( /~
1/4

the external force against the damping, as long as ¢ -{/~ /S, ie. AV TP
if € ?’/~8/5, the change of variables

t = £3/8 4 y X = £:l/8 ?1 (1.11)
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“larger ( ¢

_3—
leads to:
aln dr . .3 _ 1 .. 38 34 T3
+ 2 - . 5/8 + z = —_3./-8 Sln( € Z )"‘ Z - F T"' ) (].]2)
az? y dz . g3/8 |

in which, for small &£ , the restoring and the external force are balanced against
the acceleration, We expect thus another change in the form of the asymptotic expan-

sion of the solutions of (1.3) across the "line" A £ ( A~ P1/4

). Qualitatively,
if A }—161/4, the motion in the boundary layer O(}L /D) is strongly damped; if

A “(l”l/4, however, we expect it to be osc111atory on a time scale of 0(5,3/8).

near t = 0 and to be damped away in a time of O(E:[fi), which is asymptotically

5/8 7y./4 ).

If E»vf«, i.e. A = 0(1), asymptotic expansions for periodic solutions have
been obtainéd in a recent paper by J. G. Byatt - Smith (Ref.6). Some of the formu-
lae of Ref.6 are relevant for the whole domain 46"<'P]/4 and will appear below,
however, obtained in a different (and independent) manner. The main features of
the periodic solutions for high damping and forcing in the ranges of parameters
described above have been already presented in Ref.7. This paper complements Ref.7
with a more detailed analysis.

Concerning the problem of uniqueness, we prove that eqn. (1.1) admits of a
7 o

unique periodic solution for [ high enough, if , as s

A7) In 7 —> = (1.13)
We also present arguments (but not a proof) that, if A (")~ const Inl , one
of the Floquet multipliers related to our special periodic solution becomes larger
than unity showing instability and thus the appearance of other, stable periodic
sclutions (Ref.s). With other words, the maxima of the domains in the f’, A
plane where several periodic solutions of (1.1) coexist (cf. Fig. 1 of Ref.z) are
expected to increase logarithmically with | .

This latter expectation may be surprising and requires some comments. The
stability of a periodic solufion xP(t;E,) of (1.3) is read off the Floquet multi-
pliers of the first variational equation to (1.3):

e'x'+2/k{<+3x§(t;a)x=o (1.14)

Since, as & - 0, XP(t;éL) tends to xoo(t) in some way, we may presume that the




Floquet multipliers of (1.14) approach those of:

/3
X

ExX+2 K X + 3 (sin"t)2 =0 : (1.15)

Concerning eqn. (1.15), we can prove the following:
Lemma 1.1: If & 1is sufficiently small, the Floquet multipliers jLI,Z(a)
of eqn. (1.15) are less than unity in absolute value if !l\/s =40 > Ao> 0. If
A 1s independent of [ , the quantity max fxl’z(ﬁ )l h;s maxima that are posi-
tioned for small £ (large [ ) equidistantly in r’l/3, with a spacing

1/3 ol
ser /3y - 7 ~ 1.403 (1.16)
(3 stin t'll/3 dt'
/L
The proof of Lemma 1,1 is similar to that of Lemma 5.4, followed by the calculations

of Sect. VI (eqns.(6.10),(6.13)). The proof allows one to evaluate z)o numerically:
A~ 0.13.

The fact that the Floquet multipliers of (1.14) may become larger than unity
even if A ~ const In " , for large ~ (rather than A ~A o 38 for (1.15)) is a
consequence of the fact that xP(t;EL), although close in absolute value to xoo(t)
uniformly on [-7 /2, 7/2) oscillates (cf. eqn. (1.12)) in a time interval of
0(1/A ) with a local frequency that increases indefinitely with [~  and'resonates”
there with the natural local frequency of (1.15). This behavior has similarities

to that of the solutions of
) x =0 (1.17)

most of which are unbounded as ¢ — =, although the coefficient of x tends to unity
as U — = , (cf, Ref.g, p. 136).

The asymptotic equidistant spacing of the maxima of the Floquet exponents
mentioned in Lemma 1.1 subsists for egn. (1.14) , with the same value (1.16), if
A ¢ In [’ (see Sect.VI,VIII). This is a feature which has been observed to hold

accurately for eqn. (1.1) even if A ~ const as [ — o= (Refs.]O’ll

).
Finally, we comment on the methods of proof used in this paper. From eqn. (1.3)
and its boundary layer versions,eqns. (1.10 - 12), we establish first a proposal

xa(t) for a composite asymptotic erpansion of the periodic solution, in the spirit

of Refs.12’13; we prove then the validity of these expansions, i.e. that periodic



solutions xP(t;é ) of (1.3) exist, that are close to them. This is done by
Newton's method, with some resemblance to Ref.la. We require to this end esti -
mates of the solutionsrof the variational equation to (1.3) at x(t) = xa(t).
Controlled approximations to these solutions are offered by (suitably modified)
WKB wave functions. They also allow the computation of the Floquet exponents
of (1.14).

To prove uniqueness, we use a Liapunov function method to show first that
all solutions x(t) of (1.3) approach eventually xP(t), as close as we like as
like as € — 0, if we stay away from the points t = n % . With the help of
the solutions of the variational equation around xP(t) we write then an integral
equation for u(t) = x(t) - xP(t) and show that its solution vanishes in fact as
t —> = , through all values of t, if & 1is small enough. This approach is
unduly complicated at least for large damping, where a Liapunov function method
settles the problem of uniqueness completelyls. The excuse for staying neverthe-
less with it is the ﬁniformity of the approach over the whole range of parameters
and the opportunity it gives to present at the same time the asymptotic expansions
of the solutions.

The paper is organized as follows: Secticn II is preparatory: we describe
the approach of the solutions of (1.3) to each other (in particular to a periodic
solution), for time intervals excluding t = nJi . We give then a general scheme
of the uniqueness proofs. Sect. III disposes of the simple situation 1/f~=0(l). Sec~
tion IV presents the composite,i.e. inner and outer asymptotic expansio;s of the pe-
riodic solutions for Afi"l/a and of some special solutions of (1.3) if A<P1/4. We
also place bounds on their residuals, i.e. on the extent to which they satisfy (1.3).°
Sect., V estimates the solutions of the variational equation to (1.3) around the ap-
proximate solutions xa(t) of the previous section. Sect.VI contains the proof of the

L/4 and of some special,

nonoscillatory ('outer left' and "outer right") solutions of (1.3) for A < F"]/4.

existence and uniqueness of the periodic solutions for A%

Section VII discusses a further, oscillatory solution of (1.3) for t > 0, with

the help of which we propose a uniform approximation to a periodic solution of

1/4

(1.3) for AT . Section VIII proves the existence and uniqueness of xP(t)




1/4 . .
for 1n L M<A<M/'" Section IX contains some final remarks.
It is profitable to introduce right now some notation. If x is any twice

continuously differentiable function on [-¥/,%/2) (of class Cz), we call:

:Z(x)’:?z(o(x)—sintsfj;{+2/‘« §{+x3-sint (1.18)
the action of the "Duffing operator” on it. The residual of an approximant xa(t)
to a solution x(t) 1is 3 (Xa)' & (+) dis a continuous operator from a Banach
— — ,2 3 . . . —
space E (-35/2,5/2) of C° odd periodic functions (i.e. x(t) = - x(t+ 7)),
with the norm:

iix), = £ supl;E) + 2L sup xl + sup|x | (1.19)

D iy -
1< T2 fo)tl< I jti< #/2

to the space @ (- 5 /2, 7/2) of continuous odd periodic functions on [- Wlx, 4/
with the uniform norm:

Iyl =¥y 1= suply(e)l (1.20)
{ti<aya

The Frechet derivative of % () at x acts on & x ¢ P(-3/2,5% /2) through:

2,00 =80 +2 k(50 +3x(50 . (1.21)

Its inverse, which leads from (. back to JD is given by the formula of the

"variation of the constants'': ¢
. _ T x (e () - x (eY)x, (¢
k(es6) = [3_0) 700 = a,(Bx (6) + a,(Dxy(e) +J-:— L2 2R
-H W(XI,XZ)

x £(t') dt' (1.22)
where xl(t), xz(t) are two linearly .independent solutions of zx(x) (x]’z) =0
(cf. (1.21)) and al(f), az(f) are chosen so that the result is in 1D , 1L.e.
k(=7 /2) = -k(T /2), k(-7/2) = - R(F/2). If x, (£3£) denotes the integral in

(1.22) and A x, = xk(—J'i'/Z) - xk(T/Z), k=1,2, it is true that:

k
Ax, | x. (T/2;£) - Ax, , x.@/2;f)
a (£) = Tk 1 3k 1 , k=1,2 (1.23)
'Ax1 sz - sz Axl
In (1.22) and below:
W(x],xz) = X X, ~X X, (1.24)

is the Wronskian.




11, Prepar‘étion for the problem of juniqﬁeness

‘Lemma 2.1: There exists a rectangle:

D: |x|<B , l ]<{_» (2.1)
so that all solution paths (x(t), x(t)) of (1.3) eventually get inside it. The
constants B], B2 alfe independent of & ,f‘ if £ an& 6//@ are sufficiently
small, , | '

Proof: We exhibit a Liapunov function 4>(p;x;t), with p = dx/dt and
depending on & , with the following properties: (a) <1L) (p;x;t) —> 0 as | x|,|p]
—> o0 , uniformly in all directions and with respect to t, for all t; (b) %(p,x,t)

>> 0 outside a rectangle:

D, : {xl< & l%)< T’% | (2.2)

(c) d CF/dt (ps;x;t) > § 3> 0 outside (2.2) for all t, Then, one can show that
there exists a rectangle (2.1), containing (2.2) in its interior, so that all
solution paths eventually come into it (see Ref.]«6,' p.371, ch.,VII,§3). The para-

meters of the rectangle D, eqn. (2.1), may be inferred from those of (2.2) as

follows: let:

4901 = min mi ’l/(p,x t) (2.3)
t p,x( DD =

Then, choose D so that
%02 = max max ﬁ/ (p,x,t) _ (2.4)

t pPyXx€ 2D
obeys %02 .< é"\o]'

Assume first {-.‘_//¢2 < 1; in this case, such a function 43 is offered in
16 . 17

Ref. =, p. 377, in an example due to G. E. H. Reuter (Ref, '):
<I> (p;x;t) = exp [ - L(p;x;t)] (2.5)
} 2 x4
E (pix;t) = ¢ B + X (2.6)
2 4
D (p;x;t) = L(p;x;t) ~ E(p;x;t) (2.7)
and
D(p;x3t) = O if p ;/“'-l . (2.8)
€ 0 -1 . -1
=7~(p»,t~ ) 1f\p\é/~ » X2 2
= -2 & if p<-’*_],x22




—'(s;f,uz)x if p< —’f:l, 1 x]< 2
2(&//.3) if p<-p, x<-2

--}:—<p—}~"> ifip\</~"‘ , X< =2

= (?t//u < 1. Clearly, if é‘//u 2 5w,

With this, we have in (2.2) Al =2, A2

the quantity A2 in (2.2) increases without bounds; we choose then instead of (2.6),

(2.8): .
2 4
E(p;xjt) = £~%r + %r - xsin t (2.9)
and
D(p;x;t) = O if p >max'[(lx|//l~)1/2, (A//k)‘/z_] (2.10)
= £ (p-yx S ) if |pI< x/f- , X 7 A
= -2&:Vx/}~ if p<‘—j;—/7.. s X > A
; /

-2¢€ (x/;&.)Vle /}L if p< —fA/}w o X] <A

25;{.\;!_7; if p<—\{‘|x|//t~ , X<= A

- e —ixt /e ) if {p|<f\xl0k- sy X<~ A
Differentiation of (2.9-10) estaglishes the claim coﬁcerning s%)(p;x;t). A good
choice is any A >3. This latter choice of <i5 satisfies then the conditions
(a) -~ (¢) above, providedv/4< 1, E/f& << 1, It is valid even if &*v/&z, which

was marginal for (2.6 - 8). With (2.4), we may choose B, ¥ 3, B, ¥~ 9, This ends

1 2

the proof.

Remark: The ultimate boundedness of the solutions of (1.3) for fixed ¢ ,/p,
is well known (see, e.g. Ref.l6,p.376). Lemma 2,1 asserts the independence of
Bl’ B2 on €& if & 1is small enough.

We show next that, if f~ = o(1) and E?//~ = o(1), two solutions which
enter and stay in the rectangle D of (2.1) approach each 6ther as much as we
wish, within a half period of the external force, provided only we allow £ to
be appropriately small; For simplicity, we shall assume that, if /.< A, eqn.(1.3)
admits of a solution xo(t) which stays in D for t > t, and has th; property:

(H1) There exist a,b >0, so that | x (£)]> a, (dxoldtl <b, for te¢ '[tl,t?_] ,

with 0 <t < t, < ¥ (mod 5 ), t >t

This can be proved directly, but we shall exhibit such a solution in the

/3

next sections (if r-= o(l), xo(t) ~ (sin t)l , 0 <t < ). Consider then




another solution Xl(t)’ which stays in D for t >to. We may then state:
, : 1/2 .
Lemma 2.2: Assume /&/ > / < Aand &/k -—» O as £--0. Then, for ¢

sufficiently small, there exist constants k, C,independent of £ , so that, for
tele,t,)

. dx
max [ | x,(£) = x ()] ,7E | o=1(e) - —-(c)l] < Rexp[-cCA(e-tp] @

Proof: The difference u(t) = xl(t) - xo(t) verifies:

g'u‘+2,,kf1+3x§u +3xou2+ e = 0 (2.12)
/
Introduce:
v(t) = u(t) exp[C[%~(t - t])] (2.13)

which verifies

£V + 2 ’}a.\'r (1 = ¢C) + v( 3x§(t) + (CZ— 2C)b—) +3v expL- yb(t— t])J
/

+ v3 exp[— 2C /% (t - t])] =0 (2.14)

and consider the Liapunov function

. ) Kk 2
L (v + 2; ,ﬂv) + £ G(v;t) (2.15)

v !
2
with ﬂ =} - C and
!
G(v,t) = j’ v F(v,t) dv (2.16)
[+

where v F(v,t) denotes the last three terms of (2.14). The form F(v,t) (and thus
also G(v,t)) is positive definite for téi[t],tZJ if C « a2/(8A2),. Using (2.14),
we obtain

dL

- 2
:fl --2p X VR - =t ) = - 2 ki vi(v,t)  (@2.17)
t ) H

i
It is easy to verify that if, e.g. C < min (1/2, a /SA ) and S//~ is small
enough, then H(v,t) is positive definite for t¢ [tl,tz). Thus the solution paths
(V,Q ) of (2.14) stay contained in the bounded domain:
L, () < L () (2.18)

for te [tl,tzj . But Lv(tl) = 0(g ); therefore G(v,t) = 0(1) for té—[tl,tz]
and, since G(v,t) = v2 Fl(v,t) with F] strictly positive definite, it follows
that v = 0(1) for t élt],tzj . Further, since & v + %ﬁ / v = 0({£ ), we obtain

= 0(1/1e ) for té-[tl,tz]. Rgturning to (2.13), we'obtain (2.11). This ends
the proof.

Comment: According to (2.11), if A =/4/£Z =k In i = kl In /e
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although xl(t) approaches xo(t) as much as we like within a half period, as £ —0,
this may not be true for the derivatives if klﬁ'<: 1/2. This indicates already
that the line A ~ k 1n [’ may be a boundary for uniqueness questions.

For the range of paramaters *~§> £ 1/2

,/~= 0(1), we have:
2

Lemma 2,3 : 1If ﬁ < A,/\ /& > B, A/Blsufficiently small, there exist
' constants K, C, independent of £ , so that, if t¢ ['t]+5 . t2:]:

t ) .
The quantity § tends to zero as A/B approaches zero.

- . e C
max (%, (6) = %, (0 | o |30 - xo(t)f) < K exp[-f (t - t))] (2.19)
Proof: This runs similarly to that of Lemma 2.2; however, we let now:
v(t) = u(t) exp[C( t - t )/m] (2.20)
. o’
As before, we prove that dLv/dt is negative definite for t« [tl, tZJ , if A/B

and C are appropriately small. Now, Lv(tl) = O(/*z). It follows that :

( =1~ cf-/ﬁz)
i [gj-‘tl $2 upv - 5t = 0(p) (2.21)
Eqn. (2.21) has the solution: '/ .
v(t) = D exp [-—zfll«irs(’t—tl)/z] v g Lg(t') exp |- 2/L( f(t-t')/c] dt'
= 0(1) : | (2.22)

Now, the quantity dg/dt may be obtained from the differential equation satisfied
by v(t).‘In view of the estimate (2.22) for v(t), te {t],tzj , it follows that
dg/dt = 0(1). Integrating (2.22) by parts and computing dv/dt we obtain:

v = 0(/~"‘, el exp(- 2k (et /e ) (2.23)
In (2.23) and the follo&ing, 0(x,y) = O(maé(x,y)). 1f E,Ch, is sufficiently small
(i.e. if A/B is small), the second term in (2.23) becomes smaller that l‘ﬁ/ in

1
[,t1+3 ,tZ]. Returning to (2.20), we obtain (2.19). This ends the proof.

a time § <« t, — tg. Clearly, § — 0 as ¢ — 0. It follows that v = O(lékf) in

These Lemmas are used to prove uniqueness in conjunction with a quantitative
version of a well known stability theorem (Ref.g,p.86) for sets of equations
with periodic coefficients. To state it for our situation, assume the solution
of reference xo(t) above is 2 i Qodd-) periodic. Thus xo(t) = XP(t). Then, the
following holds:

Theorem 2.1: (Ref.g). Assume that all solutions of:
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EV+2 V43RS v=0 (2.24)
tend to zero as t e . ghen the solution u(t) of (2.12) with initial conditions
u(to), ﬁ(to) tends to zero as t —»~ , provided u(to),ﬁ(to) are sufficiently small,

The general procedure to establish uniqueness is: (a) determine the size of
a domain around the origin in the (u(to), u(to)) plane (t0 # n7N), so that all
solutions of (2.12) starting in it tend to zero as t —« ; (b) use Lemmas 2.1-3
to show that every solution of (2.12) reaches at some t, the interior of this
domain. The manner to solve problem (a), i.e. the quantitative part of Theorem 2.1,
follows the same pattern over the whole range of parameters considered and we
describe it below.

First, we notice that the periodicity of xP(t) allows us to settle question

(a) using only the values of v, _(t) over a finite time interval. With this, __

1,2
sufficient conditions for u(t) to tend to zero as t -=—~ are that: (i) the
Poincareé mapping (u(to),&(to))——? (u(t0+n37),ﬁ(to+n37)) given by the solutions

of (2.12) maps, for some choice of t,on and all sufficiently small M,
neighbourhoods:

WU o iubiy=julr gle) i< 8 (2.25)
of (u =0, u = 0) into 2((kM), with k<1 and that (ii) the solutions u(t),ﬁ(t),
with initial conditions in Zé(M) stay bounded on [to, t* nﬁ] by a quantity
that vanishes as M-» 0, The task is to determine how small M must be, so that
conditions (i), (ii) are fulfilled,.

To estimate u(T), ﬁ(T), (T = t, * nJ ), we use two solutions v](t;éi),vz(t;z;)
of (2.24) and the initial conditions u(to), ﬁ(to) to turn (2.12) into an integral

. equation for u(t) on fto;TJ . Explicitly:
t
- , e » -1 '( 2/ e
u(t) = b1 vl(t,a ) + b2 vz(t,f,) + | & W(vl,vz)(to)] \ expljé (t to)] X

' - ' 1 - 75 2 - 3 '

« [v, (€9, (0) = v, (©)vy(eD)] L -3x (Du? - o’ ae (2.26)
where bl,b2 are chosen so that the initial conditions are fulfilled. We obtain
u(t) in terms of u(t) by differentiating (2.26). We regard the two equations for
u(t), u(t) as a mapping B(u,u) from a space €, of (pairs of) functions conti-

nuous on [to,T] with the norm:




-12-

&)l = sup exp [A(e=¢ ) ]jlu(e),a(0)il (2.27)
' To<t<r
into itself., The quantity A is chosen depending on the range of the parameters
A, ', but in general such that R_< min ( 11,1_2), where ﬂ(l g = exp[—.kl 2]

! ’ ’

are the Floquet multipliers (not necessarily distinct) associated to (2.24);
11,2 > 0 by the hypothesis of Theorem 2.1,
We formulate now conditions for the mapping B(u,u) to be contractive in a
ball of radius M,in {d . Let to this end KB(E ;)~) be an upper bound to:

t _
&= sup | expfi2 £ = 22 (e'=e )] expX(e-t )][lv, (61 vy(0)|+]v, (B)v, (e e

£,<t<T 2 (2.28)

and KD( £ {X ) a bound for a similar quantity with vl(t), vz(t) replaced by their
derivatives. Then, a sufficient condition for the ball ilu,u ilﬂ)L < M,to be mapped
into itself is:

2

5 , o -1 L , Uy N 2
2l [ bylive, v b+ 4Ceme )T I Ky(esX ), K (52 My My < My (2.29)
This is fulfilled if:

2
2 | D lilvesvyily = Mp/2 (2.30)
and: et
~ w(t )
[
; mi e | 3 , 2.31
M < min [1, SHKB’KDMZJ S(&) (2.31)

Because of the choice (2.30), eqn. (2.31) is a condition on the ]bi[, eqn. (2.26)
and thus on u(to), 6(to) . It is easy to verify that eqn.(2.31) is also sufficient

for contraction. Since:

W(v,_:,u)l w(e b+ e flva_. I
I, |= l....ii__L.__ t, LaCeolivy sl 1<, ~3-i7A (2.32)
]W(v],vz)’ IW(Vx’Vz)l(to)
where || xf/y = supﬂx(t)[exp ).(t—to)] , Wwe may write a stronger version of (2.31)

by using for M_ eqn. (2.30) and for lbil the right hand side of (2.32). Using
also the inequality "(u’ﬁ)”1:< nuu1+ gliuly , we obtain the condition:
RCJu(t)| ,;a(to)l) < S(E) (2.33)
where:
RQuCe )l L8] = (k)™ [2gpy + 1) uCe )l + @p + gD ]ace)l]  (2.34)
with B =V N, 5 B =V iV, il M =lv ol 0 b,

To summarize, if we choose the size M of U (M) in (2.25) so small that
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tie maximum value R(}M) of R({u(to)\,iﬁ(to)]) on it satisfies (2.33), then the
solutions of (2.12) starting in FZL(M) obey on [to, TJ:

]]u(t),&(t)" 5 < R(M) exp[—'l(t—to)) | (2.35)
Now, the value R(M) decreases obviously to zero with M, so that condition (ii)
for u(t) to vanish as t — e is fulfilled. We still have to verify that, for such
values of M, l((M) is mapped at t = T into QL(kM), with k < 1. This follows
in turn from the inequality R(jui,ju]) < kR)]u,ﬁilz , for some k (&) > 0,
provided we show that 'X may be chosen so that, apart from (2.33), also
kR exp [—tX(T-tO)J <1, If /«< A, A small, it is convenient to choose in (2.25)
g = (P/PD)]/Z, so that: '

RC(1ul, {al) =[(nvlulrn'rzu,\)”2+ (n\'rl.mxvzal)”z }2 ! hu,ally, = T(&)ju,all, (2.36)
and X must be chosen so that T(s:) exp[- X(T—to)].<‘ I. In the course of the
paper, we give, in various ranges of parameters, estimates of the quantities used
above and show that the appropriate choices of the parameter N. can indeed be made,
This closes the preparation for the uniqueness problem.

Controlled approximants to solutions vl(t;& ),vz(t;zi) of (2.24) on finite
intervals are obtained in Sects. III,V,VIII; they are also used to obtain the
Floquet multipliers associated to xP(t). To this end, we recall the Floquet matrix,
which is such that:

vo(e+T) = £ v (8) + £, v,y (t) (2.37)
has matrix elements given by: ('U :1,1)
Vo (= F/2) v (T /2) - v, (-T/2) V(0 [2)

= ( -1 )j+l 3-1

N (2.38)
ij W(v,,vy) (e = =37/2)

The quantities vi(i'/Z), Qi(3'/2) contain a factor exp [-(/«FYF-ﬂ, so that we
may write:

F = exp(-/%a?) F (2.39)

and det F = 1. The Floquet multipliers are given by:

~ _ B, /
/«1’2 exp(- X],ZJT) = exp K— ,%J)gzé- Tr F _tl(-;- Tr ?)2 - 1]1 2} (2.40)
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I1I. The situation at very high damping:["Z/B/A = l/r. = 0(1)

This situation lends itself to an easy analysis; the approach used in this
Section will be imitated later for -other ranges of parameters. It is convenient

to change variables to z = r-x:

Y52

with 5—//* =)( y €= l//h-3. Clearly, X =0 as £— 0.

N »

+ 623 =sint IR (3.1)

We obtain immediately an asymptotic expansion of a 2J periodic solution

zP(t) of (3.1): 1let 22

P be the 27 periodic solution (pendingra proof of its

existence and uniqueness) of:

2 ; + 6 27 = sin t 7 ‘ (3.2)
Then: : | : A
zp, ~ zg + \Czél) + lﬁz zéz) Foeees v | (3.3)
with zél) the (unique) periodic solution gf: _
2z, +3c zI£°) z == .’:120) (3.4)
etc. The existence and uniquenesérof z;?), 2;2),... is-obvioué due to the linearity
of the corresponding equation. The eXiétence of zéo) is also clear: the time 2

1/3

Poincare map of (3.2) transforms an interval [—k,k] with k& > 1 into itself

and has thus at least one fixed point; further, the Liapunov function

L(y 7)) = (z, = 2)° (3.5)

;o) is unique (see Ref.16,

(1)
P

obeys dL/dt < -€k4/8, if | z, - z215k, so that z
p. 379, ch. VII, §3). Thus, (3.3) is well defined. Also, the uniqueness of z ,
i=0,1,2,... means that they share the symmetry of the corresponding equations,

i.,e. they are odd periodic.

Let now:

n
2 (&) =2 ) X< M w (3.6)

k=0
Clearly, with (1.18), the residual of (3.6) is (:5 refers to the version (3.1)

of (1.3)):
Dz ) =o)X (3.7)
We prove next the existence of a solution of (3.1) with the asymptotic expan-
sion (3.6) using Newton's method. Witﬁ the notation of the Introduction (and the

obvious changes due to the replacement of (1.3) with (3.1)), Newton's method

1
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means obtaining the correction Az = zn(t) - zP(t) to (3.6) through iteration of

the nonlinear equation in jﬂ) (=5y2,3/2)

Az =[éx(zn)J']( é(zn)) +[z’.x(zn)_'j'l ECRYEE ‘77( z 542) (3.8)
with 5;1 of (1.22) and 22 (zn;A z) the mapping from D (=ij2312) to L (~ip,in)

given by:

Ui =36 z_(an?+ ¢ (a)° (3.9)
The sequence of iterates converges if J% ( Az) maps some balljjaz i< M in
jﬁ (=3/2,%/2) into itself and is contractive there; the ecrror jazil of z_ is given

by the smallest value of M with these properties.

RS

Let H[Z (= 'l =K. If 14 2z} < M, it is true that:
N A, < k[iZE)i s o(e D] (3.10)
and |
JACaz) - ACazll< ko Milaz, -az,l 3.11)

Thus, to settle the question of convergence, we have to bound K, i.e. estimate
the magnitude of the solutions of (1.21), in our’case of:

VY 3 +22+35zr21z=0 (3.12)
Concerning this, we have:

Lemma 3.1: Eqn. (3.12) has two linearly independent solutions of the form:
t

- o1 : ,

21, () = g (8 exp[ -y .L,fl(t ) at' | (3.13)

: t
209y () = gy(t) exp [- & [ dy(t") de' | (3.14)

.._}7/

where :
dl(t)=1+(1—361z§)'/2 > (3.15)

1 L 2.1/2 2
d, (t) "o (1 -( - 3ckzn) ) ~ 3 z/2 (3.16)
and

g 50 = [1 - 36X 27 hy (0 (3.17)

with hl,Z(t) =1 + 0(6&~2) and with first and second derivatives of O(GXLZ), for
te[-A/2,7/2]).

Proof: Without the factors P]’z(t), egns. (3.13-17) are WKB approximants to
the solutions of (3.12). By means of standard changes of dependent and independent

variables (see Refs.18_2]):




t
€ = ﬁx-scz(c )Jl/z t' = _:/Cfi(t')l/zdt' (3.18)

/2
jl/4

w=exp[(t +7/2)/x]] 1 -3X¢ 2. (3.19)

the equation for w may be written as:

de—(1+XR(4))w=o (3.20)

ay’

_ 2 _ 2
=t (8 - G20

Transforming (3.20) to an integral equation, one sees that the corrections h] 2(t)
?

with:

satisfy: 1
h () = 1 +X‘/2j[1 - T2EEVRG ey vedy 20 ar (3.22)
and a similar equatlgg—for hz(t) with - % /2 replaced by 7 /2. Gronwall's Lemma
yields then the estimates in the statement of the Lemma. This ends the proof.
Comment: The manipulations above are standard. They have been written only
for further reference. The estimates rest on the fact that Z s zn, %' are all 0(1).
With (1.22), (1.23) and (1.19) one estimates easily, using (3.13-14):
WGz 1ys2 090 (0 = 0 TH exp[-;)—(z— (t + 7 /)] (3.23)
and
)[25 )] = o) (3.24)
From (3.10) and using (3.7), we see that, if we choose M = O(6X}5, it is true
that "ﬂJ?(A z) <M, if 1Az [< M; since, in (3.11), it is clear that ke M <« 1|
(for small.Xf ), we have established the existence of a periodic solution zP(t),
with the expansion (3.6) and an error of O(GQLR) . Since the integer n in (3.6)
is at our disposal, we can approximate zP(t) and its first two derivatives by

means of zn(t) as well as we wish., In particular, z are all O(l) and

P’ %pr %p
the estimates of Lemma 3.1 stay unchanged even if we replace z, by Zpe

The (absolute values of the) Floquet exponents are:

Al RP%)
X 1 'y et s 'y et
| o= ) 4 ety aet A, = = | d (") dt (3.25)
XI/ - 1 2 Ji 2
“a %/
with dl’ d2 of (3.15-16) and z replaced by Zpe

With the help of (3.13-14), we evaluate next the various quantities appearing
in Sect. II, eqmns. (2.25-36), needed to prove the uniqueness of ZP(t)' There are

the (obvious) changes of notation &€ ~4>X_,/«-? 1 and the nonlinearity in (2.26)
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contains a factor ¢ , From eqn. (3.22), we notice that lhl 2(t) -1 I = O(’\(’ ) on
’

time intervals T - t -~ 1/x¢ , and so is n],z(t) (hl(to) =1, hl(to) =0,

Dy (T) = 1, hy(T) =0 at T =t_+ 1/X6 ). With this, we choose in (2.25) g(£) = X

and let A»= ke , 0 <k <,X2/6‘ . With (3.23), )(Ei(to) = const # O. Further,
in eqn. (2.28), using the remark above on h] 2(t) and the fact that (1/X) dl(t)
>

+ 6 dz(t) =2k /g , we obtain:
! t

t t |
| K | < const sup fe—l(t'_to)[ e jt"(’\- dl(t")/)()dt"

t .
ff.( \-6 dp(E")de" |,
t<t< T te

+ e

T
ke (t'- ,
< const J{e ke (e t:o) = C]/G = KB(£ s \) (3.26)

<

In deriving (3.26), we have bounded the second term in the brackets by a constant,

for any t',t, in view of the choice of }n<12. Similarly, KD(S ;X,) = C2 so that,
recalling the factor 6 in the nonlinearity,
C .
S(£) = min [1, —— | (3.27)
8(C,+XsC,)

with C3 a constant (independent of £ ). On the other hand, using (3.13-14) and
the choice of').:
R(JuCe )] »18Ce D)) = Jue ) (1 + 3ke ) + 1ae )l (3 + 6X) (3.28)
The maximum of R(lu(to)\,]ﬁ(to)l) on ZL(M) is less than 4M (for small £ ) so that,
if M < S(&€)/4, all trajectories starting in U (1) are bounded by . 4M % . v :
exp[-:X(T—toi] on [tO,T]. In particul;r, for & small enough:
| a5, < 4 Rutawlly ™€ THD e ue) i) i, (3.29)
with O<:k1<.1, which shows that, for such values of M, J{ (M) is mapped 2nto
Z((klM) at t =t + T. Thus all trajectories starting at t, in U (M) vanish
as t -~ . We still have to verify that all trajectories of (3.12) reach 2{ (M)
at some t_, with M <S(€)/4. Since iﬁ(to)'= 0(,A/f§),ﬂu‘ﬁlb~<'lu(toﬂ +0(le)
and we only have to prove that any solution tha; enters D, eqn. (2.1), comes
at some time t, within a distance from the origin less than, say, S(¢ )/5. A much
stronger statement is, in fact, true:
Lemma 3.2: Let u(t) = z(t) - zP(t), with z(t) a solution of (3.1); there
exists a time to’ so that[u(to)(= o).

Proof: Consider the Liapunov function (cf. Lemmas 2.2-3):
Mo +2w?
L = + X 66(u,t) (3.30)
2
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wnere:
G(u,t) = 3 zé u2/2 + z, u3 + u4/4 (3.31)
One verifies that:
dL 273 . Zp 2 2\
el 26 u 1-2. ZP(ZZP-XZP) + (3ZP— T) u+u -J = -2gu Q()(_ sust) (3.32)
The discriminant of Q is:
. 2 n,2e¢2
AX5e) = - 3(z; - X, 2p 2p =X Z/4 ) (3.33)

It is negative, except for those times when the ratio zP/éP lies in an interval
of width O(}L), centered at a point with abscissa 0(&f).'Now,|§P|= 0(1), so that,
at these times,]zP'= O(&_) itself. From (3.32), we verify then that dL/dt < 0O

outside a stripe |uf= O(X() in the (u,u) plane. Moreover, given a constant C, we

can find a stripe Sl’ containing the previous one and also of width 0()(),50 that,

outside it:

dL

4
T <-¢cX <o (3.34)

With this, the remaining part of the proof is a slight variation of the one in
Ref.lé, p. 374, Lemma 2. We know that, for every solution path of (3.1), there
exists a time t, so that, for t 7t it stays contained in the rectangle D of
Lemma 2.1. Consider then the function:(t‘>tl)
1= L exp[CIXCAt:I (3.35)

with 0 < ¢, <¢: it is such that L -—» = in D /) CESI, as t -» , but dL/dt < 0
there. This cannot be reconciled with the hypothesis that the solution path never
leaves D N C §,- This ends the proof.

Summing up, we have thus proved:

Theorem 2.1: Eqn. (1.3) admits of a unique periodic solution xP(t) = zP(t)//v
if & 1is sufficiently small and ﬁ~7 A> O zP(t) has the asymptotic expansion

(3.3).

IV. The situation /~= o(1). Outer and inner expansions.

If t lies sufficiently far away from nii, we may iterate (1.3) formally, i.e.

we expect a solution exists with the asymptotic expansion (the "outer expansion'):
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[pm———

5o (£) = 51_._.;0/#“ NG .1

where
x (€)= (sin ©)'/3 (4.2)
X (0 = - 2x (/3% ), ete. (4.3)

In general, we may state:

Lemma 4:1 :
1/3 = 5k/3 -81/3 ff”’
-t
q=0

where the sum is uniformly and absolutely convergent on [~ +6, 3 —GJ, for any >0,

a . t2@ (4.4)

X (0 =t klq

The proof is straightforward and performed by induction with respect to, say,
1; at each fixed 1, the statement is verified by induction with respect to k.

We write in the following:

(x< L)

by- 20 pEoel
k,1<K,L

kl(t) (4.5)

If the damping and the forcing are large, but /L< A, with A sufficiently
small, we expect eqn. (4.5) to be even an approximant to a periodic solution of
(1.3), for t # nJ : on one hand, the corrections to (sin t)l/3 are odd periodic
and small and on the other, the disturbances at the passage through t = n%  are
damped away in a very short time after which we recover (4.5).

1f Al 2/3

> B Pl/a (l>‘k‘?£5/8), for sufficiently small A and suf-
ficiently large B, an approximate solution to the boundary layer equation (1.10)

may be attempted as a suitably truncated formal expansion in both small parameters

ﬁ 6/5, Yy = éi/}~°/J (the inner expansion):
1/5 57 6q/5 vl = /5 ) g = 1/55 6q/5 =
x. (TY)~ 1 . = /* yl 'Z (t) = k ) [{ v (T)
in Py 1 1 -]
/ q,1 Zq ‘ 1 : q la
(4.6)
The 7 kl(z ) are solutions of the equations:
2 d75° + ° = (4.7a)
uZ 700
2
‘ d d
, 201 2 - - M_'_Ygo
2 R 3 Zoo o1 = L2 (4.7b)
az
d~7
lo 2 o - - 3
245 ¢ 3‘?00 (lo KAZ /6 (4.8a)
d'Y
11 o)
' 2 * 3'700/21] -QT_W 6?00701710 , ete. (4.8b)
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Since we expect the periodic solution of (1.3) to be close to (sin t)]/3 for small

t <0, but T -, it is natural to choose the Yqo(z ) as those solutions of

e 1/3 713

(4.7), (4.9) whicih behave as T—=-= like ,etc. The behaviour of the

’qu( ), 1 >0, should be that given by the power of ¢ on the rignt hand side,

2 2/3

.. 2 . . . . . .
divided by (V‘Z_OO ) and ignoring the derivative term, For definiteness, we

may state:

Lemma 4.2 : Expansion (4.6) is well defined.

1/3

Proof: For eqn. (4.7a), the existence of a solution behaving like Z as
. . 1/3 .. 5/3 .
T -—-> follows by changing variables to v = ’Z/T -1, 6=¢ so that it
assumes the form:
"
' dv 9 v© vkl
R+*§V(]+V+*§'-)+ —5-6_-—0 (4.9)

with the boundary condition v-»0 as G-»-= , Using the variation of the parameters,
(4.9) may be transformed into an integral equation, which can be shown to have a
unique solution in a ball sup {v (¢)] < M, for a sufficiently large 6. . Uniqueness
€<~

is easily obtained: the difference of two solutions of (4.7a) obeys an homogeneous
equation with exponentially increasing solutions as T— -,

All other equations, apart from (4.7a), are linear and the sought solution
is produced by the method of variation of parameters. The equations have to be

solved recursively, for increasing q,1. This ends the proof,

Comment : In eqn. (4.6), the %1(7 ),:zq(z‘) are in turn the solutions of:

d~
2 .a_%‘l + Tz'i = /~ 3/5 sin (/«3/5‘t ) , etc. (4.10)
or 2= =
B d
v ZO + 2 lo + :%3 = T , etc. (4.11)
dz az ©

with the boundary conditions of periodicity on an interval of length 23'4# 3/5

1
.C/3

or, in turn, that 7%0 ~ as C—-o (for (4.11)). For eqn. (4.10), the exis-

tence and uniqueness of the ? ; follows from the same argument as in Sect., III

(surrounding eqns. (3.4-5)). Ref.22 proves the same for the :ii in eqn.(4.11). We

refer to the ?1, Zq expansions below.

We nave next:

Lemma 4.3: The asymptotic expansion of qul(Z') as &> -2 ig:

. 2q + 1/3 - 81/3‘;i: 2--5k/3

T (®)~ ) g (4.12)
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where aqu are the same constants as in (4.4).

Proof:(i) First we prove that:

qu(?),v tzq + 1/3 - 81/3 [ Sy - =5k/3 + 0(T —5(k+1)/3)]

PP | (4.]3)
" klq
with the bqu real constants. They are determined by inserting (4.12) in the eqn.

no, (q,l) of the set (4.7 - 8) and equating to zero the coefficients of the

various powers of T , We write then;

ﬂqu = qu’ko + u (4.14)

with Tqu K the sum in (4.13) truncated after ko terms. Substitution in the
H]
o

(q,1) eqn. of (4.7-8) yields a linear equation for u (nonlinear if q=1=0), with a

2q+1 -81/3 - 5(k+1)/3

right hand side of 0( T y; if ko is sufficiently large,

depending on q,l, the boundary condition is u —» 0 as ¥ - -», This allows either
an explicit solution of the equation for u or a contraction proof (if q=1=0) that
a solution exists with the required falloff at infinity.

(ii) The equations for the bkoo may be written implicitly :

~ o o =5(k+1)/3 ; . ~5k/3 )3
2 %;:'bkoo (1/3 - 5:/3) T < +(;% Broo & ) = 1 (4.15)

and may be solved recurrently, for increasing k. There is no difficulty to verify

that the b may be expressed in terms of the b , either with 1'< 1 and

klo k'l'o

k'€k or 1' = 1 and k'< k. A similar statement is true for the bqu, q>0.

We argue now that the coefficients aqu of (4.4) are obtained by solving
precisely the same equations. Since the solution of the latter is unique, we shall

have established the identity b a

klq = %klq °

To show this, we notice that the expression xék’L)(t), eqn. (4.5), when sub -

stituted in (1.3) and use is made of (4.4), yields a meromorphic function of @ =

tl/3; the coefficients of the Laurent expansion around = O are polynomials in

. . . . . L+
E,}~; the coefficients of the latter vanish identically, up to those of £ 1,

K+1 , e e .
k . We may try to determine the a from this (infinite) set of equationms.

klq
An equation in this set is indexed by the power s of ( which we consider,
and a pair of indices k,l1 for the powers of &, lk . Since:
i
s/3 = 2q + 1/3 - 5k/3 - 81/3 (4.16)

we may change indices to q,k,l. Now, the equations with q=0, 1=0 form a closed

set, i.e. no other values of q,1 are involved. They may be written as:
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2Z "”(1/3 - sk/3) £ 2 D73 +(/Zakoo / o —3/3) (4.17)

Ke K,
Using (1.9), we verify that (4.17) is transformed into (4.15). With care, but
no special difficulties, one verifies that the same is true for the higher values
of 1,q. This ends the (short) exposition of the proof of Lemma 4.3,

Concerning the behaviour as T - +se , we have:

Lemma 4.4: As T+, 7q1('t) have the same asymptotic behaviour (4.12), with
the same aqu.

Proof: We show that, in fact, all solutions of the equation indexed with q,l1
in the set (4.7-3) have the same asymptotic behaviour (4.12), as T -=+m, As in the
proof of Lemma 4.3, use of (4.13-14) in the corresponding equation of (4.7-8)
leads to equations for the bqu and for the function u(Z ). As before, we show

that bqu = aqu and consider the equation for u(¢) only in the situation q=1=0
I\

(the others are simpler). Using 7 (T) = 700 X (7) and changing variables to:
b

u(e) = w(T) expj- 3¢ ) 7% (zhae’] (4.18)
Ty -
we obtain an equation for w, for which we consider the Liapunov function L(w)=w2.

It is true that:

E RS AL YED exp[3CLj’(2(t')d'C'J | (4.19)

1-5(k+1)/3

with R(Z ) the right hand side of the equation for u, of 0(7T ). Inte-

grating (4.19) and returning to u, we obtain 2
T Y . -
luCz I <JuCz Jexp[-3¢] 9%ar] J R(e") exp-3¢| P(zaef act  (4.20)
% o T
The last term in (4.20) behaves like R(Z ) and this ends the proof.

With this, we write down proposals for uniform approximations to odd periodic

solutions of (1.3) as follows ( & is a small positive number): if AII"2/3 -9 <
A< APZ/B, we take:
x_(t) =2, vt 71(t/‘~3/5- k) = f‘)(t) (4.21a)
1=0 -
with the z 1 of eqn. (4.10); if B f"]/4 +S<’A < AIF‘Z/B =4
x (0 = X (e )‘) O ey + X (e TR (4.21b)

where ')i (t; }« ) is unity if |t|< a/« , zero if | t]> blA , (b>a) and is of
class C2 = obeys 0 < & <« 3/5; also, throughout (-3 /2, Ji/2)

O(c;/«“) P Xy = (4.22)
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In (4.21), (Q’ )

»-,l/4+<5

is a (Q,L) truncation of (4.13), analogous to (4.5). Finally,
> A > Bf’]/4, we write:

x (t) = 7( (t; /<> D ey 4 ) (t/‘ ) %P0 (4.21¢)

if Al

where x(Q)(t) is a truncation of the expansion (4.6) in terms of the ‘Z (Z), eqn.
(4.11).,

With Lemmas 4.3, 4.4, we can evaluate the residual of xa(t), eqn. (4.21).
For simplicity, we let P = min(K,L,Q) and consider the situation of P large. More
detailed estimates than those below are available in Refs.22’23. We have:

2/3

Lemma 4.5: If A >A > B P1/4, there exist constants Cps €y > 0 (depen-

ding on the choice of & in the domains assigned to (4.21)), so that

sup | 3 x)(0)] < o £%2° (4.23)
| tl<i/2
with xa(t) of (4.21),
- -$
Proof: If AF2/3>/.\ > Al’ 2/3 » substitution of (4.21a) inte (1.3) leads,

VIH); since, if § < 542,

in cdmblete analogy to (3.7) to Z (x ) = O(/"~3/5
= 0(¢& p), with p = p(8) > 0, the estimate (4.23)holds. If A K 2/3 - > A

> B F”" +$ , we use (4.21b) and

%(xa); )(i(:a’o(xi) - sin t ) +)(ﬂo(2!o(xo) -sint) 2 @Y/ € & - )

+}L(Xi - xo):l + (dz)ci/dtz) £ (Xi - xo) + ){ i yo (xi - xo)2 T(xi;xo) =

T, + Toue * T, (4.24)

where T, is concentrated on }:a',b]/""’( s 0 < x <« 3/5 and is proportional to the
quality of the matching of X. with Xout * and of their derivatives. Now, for
jtl > a/‘ﬂ"‘ , T
If 4 > 0, then f'* = d(fq<£ )), y=0(¢g p(J)), with q($ ),p(é) > 0, so that
c(et ,8§ )P

= | L =
0( l’r /t ), whereas for ltl(b/ ’ Ti O(/( T N % )o

T. , T are 0(¢

in® Tout ), for some c(=,d) > 0, Irrespective of the value

of X, if d—> 0, then c(%x,5§ ) — 0, because either /« or YV become of order
unity. Thus, to obtain (4.23), we have to keep 4 > 0. An estimate of the same

. o . . 6q/5
order is true for lm. Now, at fixed & » 1f 2= 0, the terms Zqo/t of the
inner expansion become comparable in magnitude and ~ 1, so that c(« ,§ )= 0,
The terms of the outer expansion acquire order unity as x—3/5, and c(x,§ )—> 0
again. One may find an optimal value of « » for which c(e,d ) has a maximum,

d
but we do not need this explicitly below (see Refs.22’23). 1f B]P 1/4 + > 2
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S Ly .
> B) , use of (4.21c) allows us to drop the term O0( v~) in the estimate

of Tin and we recover (4.23). This ends the discussion of Lemma 4.5.

1 . . .. )
If A < 380 /4, the appropriate inner equation is (1.12); if A /r“1/4_~a 0

Q - 2 - Oy
as [ —o , the small parameters are £3/U = I /4 and N/ fs/d 5‘{;’ y ~5/8
= A/f"lla. The inner expansion relevant for our problem reads, with the variables
(1.11):
4/8 1 4 g
x () = g8 7.0 =!8 33 7T (4.25)
- q
! 2q+1/3
where the Yq( Z;'f) are those solutions behaving in turn like C 1 as
T-=»~« of the equations:
2
d 7 d7
°© 4 of Loy u3 L2 : (4.26)
a2 dz Zo
2
d® v d
(1 1 2 3
- + 2 Y =+ + 3 =-2%/6 , etc. (4.27)
dZ2 dz Yo '?l ?

Without proof (which is similar to that of Lemmas 3.2, 3.3), we state:
Lemma 4.6: Expansion (4.25) is well defined. The asymptotic expansion of

the zq(f ) as T--» is given by:

(7 )~ Z'Zq + 1/3’:yﬁ a - ~5k/3 - 81/3 f-k (4.28)
YQ =—4 “klq
k,1
where a are the same constants as in (4.4).

klg

The behaviour of the ~zq(2 ) as ¢ -+~ is, however, more complicated, if

fal

3— 0 as € ->0: the reason is that a new time scale appears T ~ 1/¥ ; in general,
for T > 0, the solutions Yq('?) have oscillations, which are damped out in a

time t ~ E/f— (T~1/Y¥); this becomes arbitrarily large on the reduced time scale
Z , as £ — 0. We discuss this in detail in Sect. VII., Thus, in analogy to

Lemma 4.4, we can only state:

1/4 ~1/4

Lemma 4,7: If C[ , for some C > 0, the asymptotic behaviour

< M < B

of the fzq(z ) as T-—+o 1is the same as (4.28), with the same constants.
Comment : . To be sure, the asymptotic expansion of Y q(? ) as T+~ 1is

the same for all values of the parameter [., i.e. even without the restriction

s/t

> C. It is not uniform with respect to f (or £ ), however: i.e. given
a constant Co’ large enough, the' inequality:

“[q(z) Mg (D€ C, maX[TkOH ?—5(k0+1)/3’t~8(10+1)/3j 2 20+1/3 4 99
o0
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where ’\quolo is a (ko,lo) truncation of (4.23) holds for T >L’o({) and Co(f)
- =~ -as F -» 0,

Despite of the restrictions on the range of A in Lerma 4,7, we still need
expansions (4.4),(4.28) to obtain approximants to special solﬁtions of Duffing's
eqn. (1.3), even if A‘<lﬂ]/4. If Cl“]/4<fA < B P]/A, we can write, as in (4.12),
using (4.4), (4.28) and an obvious notation:

x (0 = ¥ _(t;en x&D (0 +7(i(t;g~) = (¢) (4.30)

as a uniform approximant on |tl <3/2 to an odd periodic solution of (1.3). In
(4.30), < obeys O «x¢ 3/8, If A < C P]/A, we write only for t< 0, and the

same interval for < :

_ oy o (K,L) )< oy o (Q)

x,® = K <SP @ v L e <@ 4.31)
where }:oL(t;éx) is the restriction of ):o(t;és) to t < 0. Concerning (4.30), (4.31),
we can state, in analogy to Lemma 4.5:

Lemma 4.8 : The residuals izb(xa), e, (xLa) of (4.30), (4.31) are such that:

P (4.32)

o . c
sup) “5(xa,La)(t)]<‘ <, £1
with P = min(Q,K,L), for some Cor € > 0. (For X 40 the supremum is taken on
23 ' . .

We refer to Ref. for more detailed estimates.

As already announced, the continuation to t» O of the solution of (1.3)
which is approximated for t <O by (4.31).ha$. oscillations around a reference
level given approximately by (sin t)1/3. We make next this reference level more
precise, by exhibiting an approximant to it, analogous to (4.31). Clearly, the
outer expansion has the same form for t< 0 and t> 0. The difficulty is that the

2q+1/3 . .
44 / as T-—+o does not select a unique solution

boundary condition “Zq(z )~
of (4.26-27), since, in fact, all solutions behave like this. (cf. Comment fol-
lowing Lemma 4.7). However, whereas most solutions reach this behaviour for < %
1/Y ,there are some which approach it more rapidly. We turn now to the description
of this special class.

Consider first1?qn. (4.26)(q'= 0). We look for a solution of it in the form:

k T+l ~  (T)
o) = %:0 Tadt + T vz 97 v um (4.33)

where
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2
d )
d..z.z.o.o. . Zio . 2 (4.34)
d
an dz?
ok
2 700 Tok = f(700,....,20’k_],d700/dz ,...d7o’k_1/d?)

(4.35)
(k=1,2...). In (4.35), f is a polynomial combination of its arguments (of degree
at most three). The wz Kk are those solutions of (4.34-35) which behave like
1/3 - 5k/3
T+, One verifies easily that, since the damping term is

absent, this boundary condition selects unique solutions for (4.34-35) (and that

such solutions exist). Further, v(t) obeys:

2
d"v dv (r (r) rr+l 2 2r+2 3
£ +27 =+ 3 v +3 + vo = k(&) (4.36)
2 o T ¥ J (e
where k(T ) is a function behaving like '21/3 - 5(r+1)/3 as 2 »+e ., It is easy

to show that (4.306) admits of bounded solutions for T > Z‘O, { small and any
such solution may be used in (4.33).

Now, if we set up an equation for u(t), eqn. (4.33), we can prove that for
TY Y l, all solutions obey:

|u(z )| < const |k(=)| (4.37)

Since the asymptotic expansion of the «Z is (cf. (4.28)):
1/3 - 5k/3 - 81/3

Mok ¥ 21 Ao © (4.38)
¢
it is true that, for t>zo
k Tl _1/3 = 5(1 +1)/3
l"ZoR ‘—-'O ( (_ok,lo, < const max (‘{ , T ) (4.39)

where 70k,1 is an 10 truncation of (4.38). In view of (4.37), if = }—l/f,
we may even replace the right hand side of (4.39) by that of (4.28) with q = O,
In a strictly similar manner, we derive solutions vzqR(Z ) of (4.27) and

its analogues. We write then an inner expansion:

Q
(Q)(t> = 81/8/27 g0/ (4.40)
gt (@R
and an approximant to a solution of (1.3) for t 20 (A <K CT 1/4 ) as:
x p(t) = )(i(t;iq) Xi(g)(t) + )( or (s £) x (I\ L)( ) (4.41)

(yoR +koL = Xo’ cf. eqn. (4.31)). If the power o , defining the interval

Q)

[a,b]i"‘ where the matching of x. iR

(£) to xo(t) is performed, is such that
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«=3/3 . .
s / ?. 1/5 , the ’zqR(Z ) are given by (4.33) and the residual of xaR(t)

is the same as for xaL(t) (cf. (4.32)), If /«~ SF » the inequality for % is
~ +-? < 1; if m-+ﬁ > 1, which is the cése for small damping, there is an
additional term O(i\r+l) in the estimate of the difference X, =X (cf. eqn.(4.39)).
However, in this range,'f-v ¢9 , for some §> 0, so that we may state:

Lemma 4,9: Let P = min(Q,K,L), S = min(Q,K,L,r). Then:

sup | 3 (xaR)(t)l - 0(£%17)) (4.42)

for some ¢ ? O; the estimate in brackets is valid if 0(+F > 1,

This closes the discussion of the inner and outer expansions.

V. The variational equation.

In this Section, we consider the variational equation associated to the

approximate solutions xa(t) to eqn. (1.3), presented in the previous Section:

a,§+2h§(+3x§x=0 (5.1)
Letting: ,
X =w exp[—- r;l (t+I/2)] (5.2)
we obtain:
2

U]

g,'{v+(3 xi(t)-%)w é:'n;++(t;s)w=0 (5.3)
which is the standard WKB form. If 45(t)'> 0, i.e., if rz/f > 3, (AF"Z/3 > A

> {3 'ﬁl/3), the solutions of (5.1) are obtained in complete analogy to Lemma 3.1:

Lemma 5.1: If AP2/3 >n>\3 ‘1”'/3, eqn. (5.1) admits of two linearly
independent solutions of the form: .
x](t) = g](t) exp [- &-j%tel(t') dt'] (5.4)
x, () = g,(t) exp); - f;_g e, (t") dt'] (5.5)
where *
e (®) =1+ (1-34qxh!/2 o e® =1 - (- 3y xi)”zj/»z (5.6)

with Y,= f/f~2 and
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gl,z(t) =[1-3 N xi(t)]l/!+ hl,z(t) (5.7)

The functions hl 2(t) are bounded on [—3?/2, ﬁ/gﬂ with bounded derivatives, in-~

dependently of & .

The proof is identical to that of Lemma 3.1.

-11/3

If A<{3] , eqn. (5.3) has two turning points t R’ situated at the roots
} ]

of (see Ref.22 for details):

3 (sin t. )2/3

L,R = /&2/5 (5.8)

. : 2 . .

l.e. \tL R|51(1/33/2) ﬁsl &3/ . The wavelength near t = 0 is O( &]/2/( W/ 81/2))
> . ;

= O f/ﬁ-). The latter is much less than \tR - tLl if €/u ~</&3/él3/2, i.e.

< ?'573/6 or AT PI/A. In quantum mechanics language, the solutions of (5.1)

for {3 Fl/3 > A > Bf'l/4 with a sufficiently large B are the wave functions
for the penetration of a 'thick barrier. The wave functions are expressed more
easily if we change variables to:
=t =t 2:3/2/#3 (5.9)
so that the turning points eL,R lie at a fiﬁed distance apart (i.e. for small
£ , independent of the relation /*= ﬁ (€)). Eqn. (5.3) changes to:

\2 dzw
t =5 +(Q(e3L36) -1 )w=0 (5.10)
de :
with (¢--0 as £ -»0)
S P > Q= 3(fi/,f*2) xi(t) (5.11)
With this, we have: (Refs.lg—Zl)

Lemma 5.2: Eqn. (5.10) admits of two linearly independent solutions, wl(ED),
wz(E)), which are uniformly approximated (as described below) on [-S?X/2,)il/2]

by: (C,d > O)

W (0) =< r(6) cosl-;;\[/(aR,@) + 5] 9> 6, +d (5.12)
= (@) exp L—% '\i"‘(GL,G)] 0L+c<9<9R-d
= x@sin| g vesep 3] ece -

W,(0) = s r(0) sin] 5 (0,00 + 0 >0, +d (5.13)
- re) exp[g V(o ,0)] b, + c<bty - d
= r(6) cos {-% ¢ ( Q;CJL) + i—] 8 < GL -c
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with
Yeam-Pie- 11" a6, ro) = Jacey -7V (5.14)
a
and or
s = exP[zi— f (- Q)'/2 de‘J (5.15)
6,

is the barrier transmission factor. On [QL - c, 0L+ c], wl(B ) is uniformly

approximated by:

2/

wie) =[5 Wcese ] e a2 ) M e

similar estimates holds near R with Ai(x) replaced by Bi(x) and for w2( )

in the reverse direction (Ai(x), Bi(x) are the Airy functions of the first and
second kindfﬁ For ¢ >6JR + d, the solution w]( 0) which obeys wl(ﬁ:X/Z) =
;](EX/Z), dw]/dé) (W'X/Z) = d;}/dﬁ (%X/2) is approximated absolutely to O(f /s)

on | QR - CPZ/B,Z/’I\/z] ; if 6 € ((aL +C @2/3, Q‘{ - CFZB), the approxima -

2/3

tion is relative to O(f ); for @ < UI,+ ce¢ , it is absolute and O( € ). The

first and second derivatives are approximated as above, e.g. for < 0, to 0(1)
and 0(1/¢ ), in turn. Similar statements hold for w2(9 ), which obeys the same

initial conditions asvﬁz(éﬂ) at Q- —75)\/2 .

. . . . 19-21 .
The proof of this statement is contained in Refs. ; the error estimates

are applications of Gronwall's Lemma, in the manner of Lemma 3.1. Lemma 5.2
gives more information than is needed for qualitative statements of existence

and uniqueness. We use it in evaluating the Floquet multipliers associated to

/6

. . . . . . -1
the periodic solution. We only notice the increase like e of the wave

functions near the turning points (cf. eqn. (5.16)).

1/4

If A< BT , then we can no longer use the WKB approximation between

the turning points; changing variables as in (1.11) in eqn. (5.3), we obtain

(notation of eqn. (4.25)):

dzw 2 v2

— * ( B‘Zi(f ) =) dw=0 (5.17)
dT ‘ :

which we cannot solve even approximately. However, we can still state:

IV

Lemma 5.3 : If A < B » eqn. (5.3) admits on [ -14/2, Q] of two

linearly independent solutions of the form:

w, (t) = koL(t;Cé) u, (E58) + Ii(t;cg) u L (T56) + o(e™ (5.183)

%
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— * . 3 » - o ‘m
wz(t) = }'oL(t’CS) uZO(t’E') + 1Li(t,Cg) uzi(t’f') +0(e ) (5.18b)
where u o’ U are WKB approximants to solutions of (5.3) for t < -b C, and

20

Uj;s Uy, are solutions of eqn. (5.17), chosen so as to match u

11 , U, 1in turn

20

on -aC.<t< -bC, . The solutions uli(t';{ ), uzi(Z‘;ﬁ ) are uniformly bounded,

lo

on -aC, < t < 0 and tend

as g0
uniformly (together with their derivatives) to a limit"for ¢ on [-¢& OJ , for
a sufficiently small § . In (5.18), m is a positive number, m > 1/16, which
depends only on C, , if P (or S), eqn. (4.42) are large enough. The quantity C,
has the property C, -» O and t3/8/C('4>O as ¢ 20 (we may take C, ~ €™, as in

the construction of x » in Sect. IV, but need not to, which is of use in

R* "L
Section VIII),

We describe first the matching and choice of the solutions; it depends on

a parameter z, > 0. We choose:

-6,
: /2
) 1/16 ; cos (e')
)(t )=31/4f+—]—/—4( .)j{{——::-——dt'+\f(? )j (5.19)
Yo q/ - sin 2 &
with qg(t;fl) of eqn. (5.3); \rL( £ ?o) is defined with the help of (cf.eqn.
(5.17)):
P nTse =3[ydef -2 ; (5.20)
it is given by: .;;gg/z

I
e
-
Ban
H

7~

Tt

(a5

N’

YLEs ) de! (5.21)

The parameter TO is chosen such that qbin(? ) > 0 for & < - Zo' The solutions

Uy U,y are identified as follows: consider the expressions:
-Z'c
3 1/4 ;, cos J
1 - _ 3 1/2 s -
(ﬁ >(L’£) N ~1/4(— sin) (I ( £) dze (5.22)
2 C}/. ra
in

Then UL u2i( J;¢ ) are the unique solutions of the integral equations:

e

~

z
u. . u 1 g
( 11) (z;¢) =(~1J( T;6) + "T/-r‘- J R(Cfln)(f 1/4 (") sin[J%,}u/lz(z") de'' [ X
) Fin (7 e

Y2i
o
Yty det (5.23)
Y2i

. . . . . 1/4
This Lemma is of importance in the whole domain of parameters A <[ / . It

[=

-a(. . -3/3

with R@/) of (3.21).

states that, corresponding to the partition of xa(t) in outer and inner parts,
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we can represent the solutions of (5.3) as a superposition of an outer (WKB)

part and an inner one, in the inner variable C, eq.(l.ll). The inner solutions
have a limit as & - 0, the outer ones do not. The proof of Lemma 5.3 is straight-
forward, but not short. We present below its main steps.

Proof: We prove first the statements concerning u

e

li,uzi(t ; £€). To this end,

we show first that:

. 2/3 —1 ) . - C2/3 _l " .
B UL e B P T I A L PR (5.24)
is uniform with respect to T, as long as -C£22—3/8 < ¢ < 0, Indeed, using
(4.28), for large =
o) .
Q , 5 J2q+1/3  3q/4 ~-4/3 67/3 3/t
Z i(z )V.Zoo(z-) +j\"Zol(hc ) f‘;ﬁ aooq ¢ . N'Zoo(Z )+ O(Tt ? £
4 (5.25)
Thus, for T £ It(il)ii[- Cgt2_3/o, - ZOJ , we have the uniform estimate:
Qv - ' -5/3 2
710T) = o (F) (1 + 0¥z 07, ¢ ) (5.26)
which justifies (5.24). Now, (5.24) implies the estimate:
-1/2 . I. 3
4; T (e R(P; ) < conmst/ e (5.27)
2
independently of &, for © ¢ I_(€). Eqn. (5.13) leads then, with Gronwall's
-
inequality, to:
| uli(r) - ﬁl(? ” < const/Z‘w/6 , (5.28)

T ¢ I.(&). Taking derivatives in (5.23) with respect to ¢ , we obtain, using

(5.27-28):

11/6

< const/ ¢ (5.29)

Te I (&£). Now, as £ =0, eqn.(5.22) has a limit Eli(t ;0) (or'ﬁzi( 73;0)) at
any finite 7 . Also, we can let formally ¢ — 0 in (5.23) and obtain the

)

integral equation: (e.g. for u

11 3

T
u]i(z;O) = Gl(r;o) + 4;;;/4(2;0)},R(c%in)45;;/4(t') sin[J%&ﬁz(r”;O)dc”}u](r:) ac"
e c (5.30)

Eqn. (5.30) has a unique solution uli( z;0) for v < const, as follows from (5.27)
and a contraction argument. Subtracting (5.30) from (5.23) we may establish, by
means of Gronwall's inequality and of the estimates (5.28-29) that u]i(t 3 € )
converges to u]i(T';O) uniformly on [— £_3 ,'CO], for a certain d >0 and also
that duli/dt'(t 1€ ) —> duli/dt‘(Z';O) there (uniformly). The restriction to

-5 ~ ~
[—s ,TOJC;Ig(z) is due to the fact that the phases of u]i(Z';éi) and uli(ZZ;O)
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do not approach each other on the whole I, (%), as ¢ — O; the condition for this

3/4  2+4/3 ~9/40 + &1

to happen is, clearly: £ -—» 0, which means ITI< C& , for

some 9/40 > 51 > 0. With a further restriction on $ , We may even ensure

1

~ -~ - hed S - .
that dul/dz ( t;¢ ) approaches dul/dr (z;0) on l-f- ,—26], S$= 9/40 -.Sl. This

suffices to justify our statements concerning the behaviour of ;li,lﬁzi(T';f )
as £ -0 on I, (€). We may clearly append to I,(£) a finite interval [-26,0] ,

without impairing on the uniform convergence of u_,., du]i/dt (z ;&) as € —» 0,

i1

We evaluate next the difference between:
‘wla(t) = koL(t;Cﬁ) ulo(t;e ) + }_i(t;cs) uli(t;s?) (5.31)
and the exact solution wl(t) of (5.3), with the same initial conditions at t =

-aCg . If t < -aC;, the difference is given by standard WKB estimates: (cf. eqn.

(3.21)) ale
v, (&) = w, ()< &' /16¥1/2 «JL"”"(—acE)f r() 2 (enaet = 0?16 ¢, 32
-7 (5.32)

In the domain -aC, <t < =-bC, , the functionsxw]a(t), w2a(t)’ eqn. (5.31), satisfy
a differential equation of the second order, different (slightly) from (5.3). It

contains also a term in dw/dt and we write it as:

a’ d
SE o+ P(e) S +P () w=0 (5.33)
dtz 1 dt 2

Obtaining the expression of P](t), Pz(t) in terms of )LOL’(Xi’ uko’uki’k=]’2’
requires some straightforward, but lengthy labor: they are close to zero and to
#D(t)/ £ (cf. eqn. (5.3)) in turn. Their departure from these limiting values

has two origins: on one hand, the equation satisfied by ulo(t), u20(t) is not
(5.3), but contains WKB corrections (cf. (3.20)); on the other hand, most of the
algebraic contributions are proportional to the quality of the matching of u o

with u,. (and of u

i with uzi), as well as of their derivatives up to order three

20

on Ifaca ,-bCEJ. As an example, one term in Pl(t) is:

RRUNCTE l"10{1 * ZXoki

T(t) = w(wla’wZa)—l% 2 y’i)(o [ “10(‘.‘21 - L"2

)
[-upsugg = 9y *+ uy; (5 - ;‘10)” (5.34)
Now, a typical difference u; Ty may be estimated as:
~ ~/
[ s = 9ol fluli‘u,l“l“l u o (5.35)

with ﬁl(t) of (5.22). The difference (u]i - E]l is given by (5.28), with T= C€€73/8'
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it does not depend on the orders K,L,Q of the outer and inner expansions. In

view of the choice (5.21) of 1/L( £, ?0), the second difference is proportional

i . 3/8 1/4 . - e T ~3/8
to ‘spin(i';f‘) - CF( Te /o)/ti / ), with ¢ in [-a,-b] C.& 3/0. The latter

. . P .
difference is 0( g€ ), €20 with P of eqn. (4.32) and may be made as small as
one wishes by allowing P to be large enough. With this, we verify e.g. T(t) =

0( 63/4/C2), for large P. As a consequence, using:

t
y(£) = w(t) exp[-fP](t')dt'] = w(e) (1 +o(e¥4c. %) (5.36)
"'C{C{
we obtain an equation for y which may be directly compared to (5.3):
d2 _—
=% + (o y=o0 (5.37)
dt

where, for P large, using (3.21)

T© = $wre -k @ e +X X (o) oce!/4ct -

= Pwre +l_© (5.38)
The second term in (5.38) is O(ng) and is larger than the third one, the .
evaluation of which requires most of the labor.
We now rewrite eqn. (5.3) as an integral equation, using the two linearly

independent solutions of (5.37):

t
= .-- ! " § =
yia(t) wia(t) expl-&LéPl(t ) dt J , 1=1,2 (5.39)
and the boundary conditions at%t = -aC, :
W) =y (0 ¢ [ Rese) v e T (e dr (5.40)

~aly
with K(t;t') the same kernel as in (1.22), written with the yia(t)' From eqn.

(5.40), we estimate easily, using Gronwall's Lemma:
9/16 3/2
116, o3/

With (5.39), (5.36), this ends the proof of Lemma 5.3.

| vy (e) - y]a(t)l =0(¢& ) (5.41)

1/4

Notice, the statement of the Lemma is true for any A < C[” , rjsufficiently

large. The reason why we cannot extend it to t > O over this - - range of A

is that xa(t) may acquire a complicated appearance at t >0 (see Sect. VII).

1/4

liowever, if C[ < A & B PI/A, for some C > 0, then xa(t) is still given

by (4.30) for all |t|< % /2 and we may state:

1/4 1/4

Lemma 5.4: If c[ <a < BI"'7, eqn. (5.3) admits on [-3/2, ﬂ/2]

of two linearly independent solutions, of the form: (k=1,2)




a -

Y

w(®) =X (6w (5e) + X (6560 u (E56) +-X5Rxc;eﬂ>ukon<c;z:> +o(e™
(5.42)

where ukoL(t;E') = uko(t;fi) of eqn. (5.19), u, . are solutions of (5.23) and

ki

o 1/2
3o oy eI F14 T %(2 S at' s VoG + ¥, (e)

bCy (5.43)

ukoR(t;{ )

In (5.43), the quantities ak(fi),“fk(ii) have limits as ¢ ~*O;‘fR(EZ;z O) is
defined by clear analogy to (5.21); m = m(x ) is given in (5.41),

Proof: Using Lemma 4.7, we may repeat the reasoning of Lemma 5.3 for the
interval [0,5?/2J . All estimates stay unchanged. Let ka(t;E ), k=1,2 be the
two solutions analogous to (5.18); we denote the latter by ka(t;£ ), k=1,2,

Clearly, we may write:

8 = S 7 (s
wp (656) D akj(é) ujR(t,g) (5.44)

j=1

where the matrix akj(éi) may be determined by comparing the values of ka(t;C ),
7 R(t;e") at t =0, e.g.

() = W(w ,WZQ)/ W(w )‘ (5.45)

a2 1IR°Y2R

Now, by Lemma 3.5, wlL(i:;s.), WZL(Z ;( ) have limits at ¢ =0, together with

their derivatives, as £-» 0. Thus,

- g73/8 k.. (€) (5.46)

Wy aWop) = 12
-3/8
as

- : imi Piand J =
where klz(z ) has a limit as ¢ 0. But k(w]R, w,..) W(wlL,w

2R ) T E

t = -aC,

follows by direct evaluation at t = bC .

3 . Writing:
3,(€) = a.(e) sin ¥ (£) , 3,(&) =2, (£) cos Y, (£) (5.47)

k=1,2, we obtain the statement of the Lemma.

Comments: (1) The evaluations above also imply detla (F I = 1. With (5.47),
we may write:

a (€) a,(£) sin (Y, (£) - Y,(e)) =1 (5.48)

which means aI(ET), az(t:) # 0, *fl(fi) # *f2(£2), for all €.,

(ii) For large A , comparison of (5.43) with (5.12-13) shows that a](e )~
8,06 ~ s(@)/N2, Y (€)~ Fib+1/s%, Y, (e)~ T4 - 182,

(iii) The proof of Lemma l.lkproceeds by analogy: an approximate solution

to (1.15) may be written similarly to (5.42), where the u are WKB wave

koL’ “koR

functions and the uki( T; €) are solutions with prescribed asymptotic behaviour
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(cf. eqn. (5.22) as 7T -»-~ of the equation
.2
.“’2‘ +3k‘2/3x=0 . (5.49)
ity

In computing Floquet exponents (cf. eqn. (2.38)), the only numerical task left
is the determination of the transition matrix aij(zl) in the potential 3212/3.
This closes our discussion of the solutions of the variational equation.,

VI. Existence and uniqueness of periodic solutions if Afﬂ2/3 > A > Cf']/4

. . . . 1
and existence of some special solutions if A < CI° /4

We have now gathered all ingredients necessary for the proof of existence
and uniquenesﬁof the periodic solutions of (1.3), for sufficiently high damping,
for establishing the validity of their (composite) asymptotic expansions of
Sect. IV and for the calculation of the Floquet exponents, As in Sect. III, to
prove the existence of a periodic solution with the asymptotic expansion xa(t),
eqn. (4.21}), we need an estimate ijltbx(xaﬂ —]” (cf. eqns. (1.22) and the defi-
nitions (1.19), (1.20)). Only a coarse bound on the latter is needed, since the
residuals }}5 (xa)x may be made smaller than any power of & , by allowing
sufficiently high order in the expansions.

With this, we may state:

p 2/3

Lemma 6.1: If A > A>3 ri/3

- -1 -1
AE R = ok (6.1)
Proof: This is done by simply inserting expressions (5.4), (5.5) into (1.22)

and using:

W(xl,xz) = 0( é ) exp[- b{ (t + 37/2)] (6.2)

as well as the fact that e, (£)>k>0,(cf. eqn. (5.6)) for all Iti<3/2, For more

22
accurate estimates, see Ref. .

Lemma 6;2: If f§fil/3f> A > B Pl/4 , B sufficiently large:
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1, =37 =0 ¢ ;ﬁ% ) (6.3)

Proof: We use the variable 6, eqn. (5.9)’and the WKB wave functions,

eqns. (5.12-13). At the turning points, they are bounded from above by (;_1/6
or Q—1/6 s, cf. eqns. (5.11,15). Denoting by Ti(e ) the analogon of the third
term in ( 1.22), we have the bound:
(4
T.(90 )j< const iLi ¢ J-ex [— iiilgl] (6") (6) - (9) (e")[de' IE) (6.4)
T30 4 Pl = ) (6 vy 4y (0) uy(eh)] .
R LYZA
In deriving (6.4), we have used (5.10) and
we(u],uz) = 1/¢ (6.5)
with (5.12), (5.13) , the integrand in (6.4) is 0(1), so that Ti( 6) = OS*—I @_1/6).
Similar bounds hold for the first and second derivatives of Ti(eé). With (1.23)
and recalling the factors £T,k present in the norm (1,19), we justify (6.3)
completely.
Using Lemma 5.4, we can establish similarly:
. ~1/4 . ~1/4 i -
Lemma 6.3: 1If 31 >87 C) , for any C > 0, then, for large |
-1 =5/8,
N2, )7 = 0ce ™78 (6.6)

The proof is immediate using the wave functions (5.18).

With this, and using the residuals tg(xa) in eqns. (4.23), (4.32), Newton's
method described in Section III .establishes the existence, in each of the parameter
ranges described above, for large r » of an odd periodic solution xP(t) of (1.3),
which is approximated better than any given power of & by xa(t), eqns. (4.21),
(4.34), provided only the order P of the expansion is large enough. With the choice
of the norm (1.19), the same is true concerning the approximation of the first
and second derivatives of xP(t) by dxa/dt, dzxa/dtz. Because xa(t) ~ (sin t)]/3
for t away from n% , in our range of parameters (cf. (4.1),(4.2)), it follows
that xP(t)'possesses property (H!) of Section II.

Now, the solutions of the variatiomal equation (1.14) associated to xP(t)
and their derivatives differ from those of eqn.. (5.1) by quantities of 0( ES),

where s may be made large, by choosing P large. This follows by rewriting (1.14)

with the help of two solutions xl(t), x2(t) of (5.1) as:

1 _ '

xl(t ) xz(t) x](t) xz(t )
& Wit)

x]P(t) = x](t) + vs 3 le(t')[xi(tV) - xi(tvz}dtv

=9/

(6.7)
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We use then the bounds derived above on the kernel of (6.7), the fact that

; . S .
sup | X, - xal is 0( € ") and Gronwall's Lemma to obtain the announced statement.
t

Thus, the Floquet multipliers may be computed accurately using the wave functions

of Sect. V, solutions of (5.1).

1f Ai"2/3'> A > Dlr"1/3, D, sufficiently large, eqns. (5.5-5.6) yield,
via formulae (2,23): i 5
}:I = e Xl”x.const exp [— f%‘J:xﬁ(t') dt'J ~ const exp[- 5%; S(sin t)Z/3 dt]
Ry ¢ T (6.8)
I = o 1—zj‘":gconst exp l—/%{f(l + (1 - 3ﬂzx§)1/2 dt]r: const expl— %g\ﬂ]
;2 N (6.9)
1f D2P1/3 > A D B‘FW*, B large, eqns. (5.2), (5.12),(5.13) yield:
~ ; Yt Y i Yot ¥ -1/
/41,2 = exp |- -/E’J':]gcosh[ln s(f) cos(-—&(;—}-'->_+_lcosh2 1n s(f) cosz(—l-};——-l-'-) - 9 :
o ' (6.10)
with s({ ) of (5.15), Y, = Y(-7/2, 0, Yg= \F(GR, W/2) (cf. (5.14)). For
large r i
Vg tY 1 ‘ '
R L. I ~,}-_-J]sin 173 ae (6.11)
e e el

Eqn. (6.10) shows a sequence of equidistant maxima (and minima) in i"l/3, spaced
by the same S(l"]/j) as in (1.16) and of height exp(- ﬁj7£>. s ( exp(—/‘ﬂ/e /s
in turn),; over most of the interval of length <& ()“‘/3), the exponents are real;

there are narrow spikes around the places where ‘YR + Y‘L = nliif ; there | lll=

YX2|= exp(-fw/f> .
1/4 1/4

If 57 >a > ci” , for some C>0, eans. (5.4
2

ro

) lead to:

W v
~ - b . Tb (& . T 1/2
ﬁlﬁ(£)=(mﬂﬁ")/£-lé- mnkT§-+cG“ﬂtlwé—~ su1(7?-+c®)%ﬂ/
: (6.12)
where (cf.(5.43)):
b2(e) = a2(£) + ar(€) - 2 (6.13)

and c(¢ ) depends on ﬁ}( £), ?é(i?), eqn. (5.43); by Lemma 5.4, these quantities

1/4

have limits as ¢ -2 0. For large 4/ , b(£) v s(F ){*5, c(fi):£0(1/sz) + /2.,

Eqn. (5.48) implies that bz(& )y 2 0; if ]b(i )| > 2, there are again equidistant

(13

maxima of maxlh )| , with the same spacing (1.16), separated by inter-

I,Zi 1,2

vals where ]/«l(z N = \/T«J 2(: )l= exp(—*ﬁ/;) zexp (=h A).,

We establish now the uniqueness of the periodic solutions constructed above,
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following tue pattern outlined in Section II. We choose T = t, +3% (n=1) in the

formulae there. )

.

If A["2/3:>A > Dllﬁl/J (u >\J), we choose in (L.aJ) ) (¢) *(k/A)J x,(t')dt'

_)O/l
with k<1 independent of & . Clearly, since xP(t)~451n t) )»(i %:1 <A (f ),
eqn., (6.8), for small ¢ , with )o independent of &£ . With (5.4),(5.5) and the

choice of \ above, we may let in eqn. (2.32) ”vink=lvi(to)‘= I, “vihflvi(toﬂ
(M/ky h/e ), i=1,2. As in (2.36), we let g(& ) = R

so that T(e ) = (1 + (F//~)2

From (2.33), we conclude that if:

1/2 ¢ , ' 4 1/2 -1
[u(e D]+ ¢ / fat )< il < 7& = 5 (Cp + z'./ c,) (6.14)
e} . r: P 1 2
3 (1 + ¢ /fk)
and 1if
(1 + xiu/u ) exp(—txoi ) « 1 (6.15)
-~ al/3
all solutions of (2.12) starting in ZI(M) approach zero. Since téCk = | l/J/A

<'1/D1)(6.15) can be fulfilled in our range of parameters. Yow, Lermma (2.3)
shows that, in an interval t +é ] 0<,t < t,< 5 (mod W ):
| uCe)l+ (/L )}Liu(t)l<: const exp[— c(t - tl)/f‘] (6.16)
Thus, 1f we let A be small enough; we find for any solution of (2.12) a time t0
in [tl’t2] so that (6.14) is fulfilled. This proves uniqueness for the present

region of parameter space.

o, 2 3sa> art4

2 3, 3 large, we choose again X= Ao’ in-

2<

dependent of & and such that

Vo b o sy 2 -4 10 [nin T I ) N O )

L
d f Jt T

cf.eqns. (5.15),(6.10). VWe notice that, as £-20, the upper bound on ). recedes

to infinity. Further, since in our range of parameters:

é(I—Q)l/z < h/e ,t(“[tL, tR] (6.18)
the wave functions v](t), v2(t) are monotenically decreasing, apart from neigh-

\ , . . , -1/6
bourhoods of the turning points where they are bounded from above by € /

(cf. eqn.(5.16)). With this, one can verify that, in eqn. (2.23),}K H<€TJ/3 =

KW(S;'X). For | large enough, it is true that lv.i, = v.(t )~ ( 2/8 )]/4 and
1A i o

2 7/4 ~-7/6 (¢ //‘L )3/2

,» T(&) = 4, From (2.33),

l| ' ~V (€e) » Ce/ ") "7/¢ . It follows that R, (& sA) =€

. . ; _ 2 2 _ 1/2
and, with the choice of (2.36), g(¢) = ¢ (h7/g)" =¢
v
it follows that, if
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| uCel + € e )| <1 < const I 4/3 (6.19)
and if '

.
e <

4 1 (6.20)
all solutions of (2.12) starting in ({(M) vanish as t —wm . Clearly, (6.20)
may be satisfied letting )'o be large enough (but finite), which is possible
for & small enough. On the other hand, Lemma 2.2 ensures that, for t f[tl,tz),
0 <t < ty,< i (mod i)

fu(e)] + fe [a(e)] <« K exp[- c/g (t - t1>] (6.21)

which shows the existence of a to # nh , where (6.19) holds, for & small enough.

This proves the uniqueness of xP(t) in this range of parameters.

1f Bl"l/4>/,\ > CP]M, for some C » 0, we choose X=)(o<,z:: —j—l.- In(b(e&))

(cf. eqn. (6.13-14)) and g(¢ ) = {g . Using eqns. (5.42), we obtain easily

KB(Z ;\) = C], KD(S ;X ) = 0251_3/8, so that the version of (2.33) of interest

reads:

5/8 (6.22)

. e o :

| u(to)\ +ig |u(to)i < M < comnst &
as is expected from (6.19). The arguments used in the previous parameter range
stay now unchanged. With this, we may conclude:

Theorem 6.1: If Af’2/3 1/4

>A > CF , for any C » O, Duffing's equation (1.3)
admits of a unique periodic solution xP(t;f’), if |7 is large enough. This solution
has .an asymptotic expansion to order £:N, for any N 7 O, uniform on [—37/2,33/2],
given by (4.21) (or (4.30)), where the integers Q,K,L are chosen appropriately
large.

In the remaining part of the paper, we discuss only the situation A <« Cl’l/4.
The solution of the variational equation in Lemma 5.3 and the estimates of
residuals in Lemmas 4.8, 4.9 allow us to obtain two remarkable solutions xL(t),

/4 and [’ large,

xR(t) of Duffing's equation (1.3), valid for any A<:Cl"1
however only for -3 /2 <t< O (for xL(t)) and for O< t<u /2 (for x,(t)).
We state first:

Lemma 6.4: Eqn. (1.3) admits of a solution xL(t;éi), which is uniformly

approximated, together with its first two derivatives by de(t), eqn. (4.31),

arbitrarily well as £- 0, if K,L,Q are large enough, and which obeys the
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initial conditions: xL(— 3/2) = xLa(- ¥/2), de/dt(- n/2) = dea/dt(—JT/Z)

Clearly, the solution so singled out depends on the approximant that was
chosen. The proof is done again by Newton's method, this time in a space j>(—572,0)

of twice differentiable functions on [-5?/2, O], with the same norm (1.19), but

vanishing and with vanishing derivative at t = -Ji /2. Writing:
x(t) = xa(t) + r(t) (6.23)
with r(-3/2) = ;(- i/2) = 0, the Duffing eqn. (1.3) maps']D(-372,0) onto
C (- 3/2,0), without any restriction at t = -7 /2, The inverse Frechet derivative
at x_, exists and is given by (1.22) with a, =a, = 0. Using eqns. (5.18), we
verify easily, for 4 < CI’I/A:
IS o<f3/8//u) = oce "% (6.24)

The estimate (4.32) and the standard reasoning of Sect. III, eqns. (3.7-11),esta-
blish then Lemma 6.4,

The same reasoning, using the estimate (4.42) and the (obvious) analogon
of (5.18) for the interval [_0,3 /2) , shows:

Lemma 6.5 : Duffing's equation (1.3) admits of a solution xR(t;£,); which
is uniformly approximated, together with its first two derivatives, by xaR(t)’

P(8)y) it the integers P(S),

eqn. (4.41),0n 0« tsA/2, arbitrarily well (to O(¢&
eqn. (4.42) are sufficiently large, and which obeys xR(O;EL) = xaR(O;ﬁ ),
xR(0;17) = XaR(O;éZ)'

With the help of the solutions x (t; £), we may construct a uniform approxi-

L,R
mant to an odd periodic solution of (1.3), even if A< Cl"l/4. We turn now to
this.

. . .y . ~1/4
VII. A special solution of Duffing’'s equation for t>» 0; A <Ci .

The two solutions xL(t;fi), xR(t;éZ) of Section VI assume at t = 0 different
values., If we continue xL(t;El) past t = 0, we expect first an oscillatory

behaviour, which dies out in a time t €/h=1/a . If 1/p — 0 as ["—w , the

/3

. . 1 . .
solution settles down near xR(t;Z’)-v (sin t) , for t > to, for any finite to>'0.



- for t > CE
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Clearly, for small ¢, /A, xR( 3i/2) 2 - xL(- i/2), xR(7f/2) - %L(—37/2). Thus
the continuation of xL(t;EZ) to the whole interval [- 7/2, 5 /2) may offer a
uniform approximation xa(t) over this interval to an odd periodic solution of
(1.3). We make now these considerations precise,
We write:
xa(t) = xL(t) if t< O
xa(t) = xR(t) + v(t) if t>0 (7.1)

where v(t) is the solution of:

g,gA+ 2 /« v+ 3 xg v+ 3 Xp v2 + v3 =0 (7.2)
which obeys at t=0:
v(0) = xL(O) - xR(O)
v(0) = xL(O) - xR(O) (7.3)

The solution v(t;¢ ) depends on ¢ not only through the parameters of (7.2),

but also through xR(t;E ), xL(t;E ). We are interested in the behaviour of v(t)

3/ 3/8

8 (Recall ¢ < 6//& in our range of parameters).

To this end, we change variables to:

r =t 38 . u(t) = v(e) ¢ /8 (7.4)
and denote:
qz(t) s % (7) g ~1/8 1= ﬁ/gsls - P—1/4 (7.5)
so that (7.2) becomes:
92—‘21+2'fg—%+ 3’22(’6)u+3'z(2)u2+u3=0 (7.6)
a%

Clearly, eqn. (7.6) has a ¢ scale 1/{ for the decay of oscillations. We shall
derive in the following approximants to the solutions of (7.6) for T €I,.(e) =
[Zo’ Ce 6-3/8J 2 = Iy (€) of Sect. V, eqns. (5.25) ff.), with 7, sufficiently
large and C,—> 0 as £€->0 such that:
c, £38 w ¥ | (7.7)
Eqn. (7.6) is furthgr transformed through the change of variables:
= 1 ' - -1/2
§ Lﬁz(z)dz | , u p(;)“z (7.8)

and becomes: .

: 2 3
2 4ot ";,,4 gg o[t ReEs ]+ S ) + —F7, 1y (§) =0 7.9)

}3/8 | F
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where (1=0,1,2):

Nag
2 (5) = ¢+ o(-;g B A s asoaGy G0
and §
I NS V2 _ . .3/8 _ .3/
Co"'(},"“’o , Gy = g » Cy = ol (7.11)
with w =3 {3/4. Further: .
7&? 1 ;
K(E;T) = [ 5 3 J (1 +0(x(3))) (7.12)
7
The notation O(r(F )) means " < const max (? 2, 83/4 F3/2,’f;—5/4) ", for
% ¢ I-{(é‘):
(e[ §,, Y42 (7.13)

In deriving (7.9-12), we made use of Lemma 6.5 and of the estimate (5.25).

The behaviour of the solutions of (7.9) for large ; , £ fixed, is studied
by means of a sequence of transformations, similar to those of the method of
averaging (Refs.25’26). As in the latter, the justification of the results
depends on an a priori bound on the solutions of (7.9). This is afforded by:

Lemma 7.1: If ¢ is sufficiently small, the solutions of(7.9) are bounded

3/4

on [O, Ce & —I/ZJ, together with their derivatives, uniformly with respect to €.,

" means that all solutions whose

The phrase "'uniformly with respect to g
initial conditions at §= ;0 lie in a certain bounded set D of T{z, independent
of £ , are also bounded on I;-(g) (with their derivatives), independently of &,

The proof of Lemma 7.1 is displayed in Appendix A.

To proceed, we introduce polar coordinates in eqn. (7.9):

p = R cos ('f + #))

%R = - R sin (E‘F40 (7.14)
and obtain:
R h,(¥) cos(f +)
»3—% = ;—-— h(?)Rsux (F ¢)+—551n2(; 4)'_1((%)* ]? 3/8? CP
R b, (%) 2(5 +¢)
N 2(F ;;Z P e J (7.15a)
x

R by (F) cos(£+P)
3/8
F

h(¥) sin 205+ ) + cos’(F+d) [1(F) +

@, 1
1
(JF % . R2 hz(F) cosz(? +¢7) J

3},’3/4
(o) be the bound offered by Lemma 7.1 on R(%’) for F > 0. We perform now a

(7.15b)

Let R




-43—-

transformation of the averaglng' type, to remove terms in ?—3/8 in (7.15):
R=R+-RE- cos<;<{>h(;) 7160
I 3 - 3/8 L1ha

¢

. 2 . .
(I)] =%-§‘3/8 h](%) sin (;4-{'))[] - _S..]:.L—:?ﬁ.)‘.\/ (7.16b)

At a fixed value of ; , the transformation (7.16) is one - to — one from the

strip O < R< R(o) in the (R,ff‘») plane onto its domain of values, provided%‘ is

(0) 27

large enough (depending on R* 7)., This one sees as follows: (cf. also Ref.”’,p.294)

if two points (R,fx), (R',i’ ') are mapped by (7.16) onto the same point (R], %1),

eqn, (7.16b) implies that:
|<F-<P' [ < const|R - R'| ;-3/8 (7.17)

)
But (7.17) and the requirement RI(R’%) = Rl( R',?}) are contradictory if R,R'<

R(O) and t(? is large enough, say ? > ;o' Further, eqn. (7.16a) shows that the

(o) 3/8

image of the strip OK R<R is contained in O<R, < r(9), R (0) h (f)/(B;

1
. (o)
and one may verify that ‘%O(R

image covers 0 < R < R(o) - klR(o)/§

by Newton's method).

) may be chosen such that, for ;>§o, this

3/8 for some k, 7 O (one solves (7.16a-b)

The transformation (7.16) changes (7.15) into ( ‘f/ = ; + #’ )
3
dR R°h, (F) R 2
I 2Y' 2 R%Y"
R h () s:m + - cos \f’ sin + 0( ,RK(E& ), s
3 ?1/4 £ ¥ ; ?3‘7“4 ¥ ;9/8 v 574

T g2
-d‘?°= /4 B (;) sin 2Y- 3/4 2(;) cos "f’ (sin® v o+ cos” Y + (7.18b)

[ ’F 3 _
0(;9/8 LK), ‘?}4 LR M8

3/4

Eqn. (7.18b) contains resonant terms falling off like % . All terms under

(7.18a)

the order sign in (7.18) have trigonometric factors with zero average over a

interval of length 2% , if r}: is held fixed. The averaged equation for ()>](§)

reads: ;E
d¢ 2
i 7 R
d¥ 2% g3l by () (7.19)
We may perform another transformation (Rl’ 9‘31) - (Rz, 492), similar to (7.15),
to remove from (7.18) the nonresonant terms with a falloff like F_3/4. It turns

r

. . . -9/8 .
out that the resulting equations have no resonant terms in % / ; thus, terms 1n
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-9/8

? can be removed through a further transformation. The leading terms not

-11/8

M
involving ] are then 0( % ). We proceed then to removing the nonresonant

terms containing 7? . A general transformation (Rl,*#l) (R1+1,‘¥1+1) may be
written as:

R,,, = R, +

1+1 1 AL
1o = P+ o8 R, 5+ 3E)

The computation of dR1+1/d§ , d~#1+l/d? involves only de/d; . d#:l/d%l , which

f ( R,% (7.20a)

(7.20b)

are in turn expressed in terms of the original variables R,qb and the quantities
dR/dF , d?’/d? » available from (7.15). Thus, new resonant terms may appear

only through the combination of the trigonometrical factors of the transformation

(of fl’ bl) with those of eqn. (7.15). As will be apparent below, precise alge-
braic results are needed only for the first few steps. Let the index I stand
for "last" ; we obtain:
®, P
= -3 i MR P
fﬁ:_-i R’ (5 + O(ﬁ 132 ¢ (E;R) ) (7.22)
d; 24 53/4 by 31/2 ’ ? A

’/ . .
where the gi(gl;R), i=1,2, are polynomials of low order in R with coefficients

of 0( {11/8,{{9/5, 53/4 %-5/8).

From R(? ) < R(O), it follows that RL(\?) (o)

(1 + k.F = for

some k » 0. Further, we may find %{O(R(O)) (possibly larger than before), SO
that, for §'> §fo, the compound transformation (R,¢')—~9(RL,43L) may be inverted

on RL< RL(‘O).

It is true that:

RL + 0( RE ; -3/8

-

and similarly for §>.

R = (7.23)

TRL§_1/4

We can use now eqn.. (7.21), with R = R(RL,fPL), to place a much tighter

bound on the behaviour of RL(%Z) on I;(él), eqn. (7.13). To this end, using

(7.23), we separate in (7.21) terms that are linear in

o Th "
S(f) - 5 [-‘(;;)—?7—5 * const }3/4 ?IO(F )] (
Xut) +0(f? 2"

We multiply (7.21) by exp[s(? Y,

RL and let:

1/4

+oCTET ' ag’
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F(E) = R (§) exp[s(¥)] (7.25)
use, for F > ?o(R(o)), the inequality (cf.(7.23)): '
R <R [1 + k1(§'3/8 +T§_”4)J (7.26)

with k] = kl(Rco)) and transform (7.21) into the integral inequality:

" :
F -2s(& ") ., j 2 -s(&') ~ ., ~s(§') '
+ PR f . ¢
F(?){F(Fo) CIST;. e 7 ag' + s;r e g](y ; Fe )dg;
fo = (%5 35 (7.27)
where gl is a polynomial in Fe_s, of one degree less than 2 of (7.21) and with
positive coefficients of the same order of magnitude. Now, by Lemma 7.1:
| FCE )] <r exp s(g ) (7.28)
%o {L P go *
We observe next that the Volterra integral equation obtained by placing an
equality sign in (7.27) admits, for ;0 large enough and & small enough, of
a bounded solution on I;_ (&€). Indeed, I(f; ?o;F) of (7.27) maps a ball of
radius (1+ S)C exp[s(; O)J in the space of functions continuous on Ig(é‘-) into
. . . .. . -3/8
itself, provided {o’ £ are chosen so that quantities like: ;o exp[s(?o)] s
, r 9/16 _3/32 . .
‘{\(ln?o\) exp [—-7‘\ s({; o)] 2 9 exp[s( ; 0)] In(1/Y¥), ¢ Ce are sufficiently
smaller than unity. The conteaction condition is obviously satisfied in the
same manner.

We call Fo(§ ; £) the (unique) solution of this equation; it is clearly
positive on If (€), since all terms in I( ;; ;o;F) are positive. The monotoni-
city and Lipschitz continuity of the integrand in (7.27) with respect to F for
positive F imply that all positive solutions of (7.27) obey:

FCE3€) € Fo(E3€) =F(ED + I(E; £ 5F) (7.29)
. . -1/2 .
for all “g ¢ I?(é) (see Ref'.28,p.l8). We denote ;RN C2/4 g~/ , the right
. - . £ e ..
end of I;(E) and F(gR). ROL(E,) Clearly, ROL( ) depends on the initial
conditions.
Integration of (7.21) from %

(
inequalities valid for all ’7' € I»; :

R backwards and use of (7.29) leads to the

RopC8) = TCERs §3F ) S F(F) SR (&) + I(§ 5 55F ) (7.30)
With (7.23), (7.25) and the bound on ‘Fo(§)l above, this means:
e -3/8 I -
RCEs€) =[Ry(e) + 075, Y10 = )] expf-s(5)] (7.31)

where the second estimate ( 'fln 1/ ) is valid if F*{ 1/{4/3.
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We turn now to eqn. (7.22), use (7.31) for R(g ; £) and integrate from ‘;R

to ; ; we obtain:

S'E;L(’E(') = YOL(E) - 'izl-; R<2)L J(T;F;B/l;) + const Tz §]/2 + 0(;-1/8’.52/31‘_1 %r)

(
(7.32)
where we have denoted:

Voo(e) = Pk + L 3530 - conse P2EVE O (.33)

and , ?’ < ( .
' v -2s(§) -23¥z' _
35850 = S S hy(F"D dg ”JS_"("TE—UB ac' =08y g o,
;o (;) z, (?)
- o( ln-;.-), itk=1, =o(YYEDBy e < L (730

Eqn. (7.34) is also used to obtain the 0(°* ) term in (7.32).

The behaviour of the phase (I;L( ':;'(Z)) is interesting: on a < scale

1/3

short compared to 1/¥ , its absolute value increases like T , due to the
second term in (7.32); at T ~ 1/y , it reaches a magnitude O(f_l/B) and
levels off. The contribution of the term in (7.32) proportional to {2 is only
O({l‘/B) at T ~1/7Y and if /« ‘<f—3/4 (4% f’]/())', it vanishes as £->0 even at
T~ g3 8. Even otherwise, its effect is negligible due to the smallness of R( F)
at T~ ) _4.

3/8

Changing back from <fJL(§) to Cj (;) of (7.15) adds phases of 0(;’
~1/4

)
(cf. (7.6)) and of O(f; ); the latter contribution appears in the transfor-
mation removing the terms proportional to Y\ in (7.15). Both these phases are
smaller than the error estimate in (7.32).

We summarize the foregoing in the form of:

Lemma 7.2: If T, is sufficiently large, the solutions u( %) of eqn. (7.6)
are given on [TO,CS‘F_:&/S] by:

w(e) = [y @172 r(gie) cos(Erep(F D) (7.35)
with -’Z(Z) of (7.5), ¥of (7.8), R(¥;&) of (7.31) and cj:(;) = c}:L(;) of
(7.32). The solutions depend on two parameters ROL(S),YOL( €£) (cf. eqn.(7.33)).

From Lemma 7.2 it follows that, at t = C; (cf. eqn. (7.4))
v(Cg) ™ ROL(f',) t‘.3/l6 C:l/6 exp[-C, /(/8] (7.36)

Clearly, v(C, ) — 0 as £— 0, since RoL(E) is bounded. The derivative du/d ¢

is obtained from (7.35) using (7.15) for dR/d; ,d%’/d; :
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’

d_-% = _B ROL e-s(f )7]/2 [sin (F_‘_(r(;,' )) + 0({3-]/3 :-1/2)-} (7.37)
Thus, at t = C :

8 (e~ £7110 cl/6 exp -k ¢, /e) (7.38)
Notice, if Siék ~> 0( A ->> ) asye-a 0, but not quickly enough (e.g./#-»krln-% ),
dv/dt(C. ) — = as t£-0, for any C, obeying (7.7). |
We obtain next the behaviour of v(t), eqn. (7.2), for t on ch’ 3/2] .

Changing variables to:

13
¢ = fou') 3 v =20 el e - ore)
ac, Xp () (7.39)
we obtain:
Fg—z-W-+WLI+ER(3X)—/-——-—-J Yi expt‘—/b- (t—Cﬂ +—‘£— exp[- Z/b-(t—
o e Rl e TGy g el 2R

= 0 (7.40)
where R(c#) is given by (3.21) and we are interested in the solutions of (7.40)

which obey at t = C, initial conditions derived from (7.36), (7.38). The solution

we need is obtained in a standard manner by transforming (7.40) to an integral

-1/2 ~1/2

equation using the solutions cos(s € ), sin(¢ £ ) of the (incomplete) linear

part of (7.40). The free term of the equation is:

(o) .3/16
4

- k
W' (t) = Ce ME

(()cos(t %(f)+f€ ) e (7.41)

However, it is not true that w(o)(t) is a good approximation to v(t) on [C{,JI/ZJ,
unless
ki/f(ein 1/€ ) —> o (A/ 1nT —=~) as € —=0 (7.42)
/
Indeed, one verifies that a condition for the mapping w - w(o) = r»—>r(°) + Ar,

given by the integral equation to be contractive is:

M e 20, pre] < (7.43)

Since C, —» 0 as slowly as we wish as (- 0, we conclude that (7.42) is indeed

sufficient,

(o) (o)

Let now v (t) correspond to w (t) by (7.39). We may state then:

Lemma 7.3 : If (7.42) holds, then:

‘V(t) _ V(O)(t)!= exp‘l."/l“ t/£1)/2 O( F—I/S exp(_ C&./\/f:,)) (7.44)

XR(t)

uniformly on [Cg ,57/2] .
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This closes the description of the special solution v(t) of (7.2).

VIII. Periodic solutions if 1n P'{A“<r]/4

In this Section, we apply Newton's method (Sect.III) to improve xa(t),
eqn. (7.1) to an odd periodic solution of Duffing's equation and then prove its
uniqueness (as described in Sect. II).

First, xa(t) is not itself odd periodic for two reasons:(i) the solution

xR(t) differs from the outer expansion xéK’L)

cP(S)

(£) (cf. eqn.(4.41)) for t>a>0
uniformly by quantities of 0( & ) (cf. Lemma 6.5), with P(S) of eq.(4.42),
and ¢ > 0; (ii) the additional term v(t) is such that v(3/2) # 0, ;(QF/Z) # 0.
We modify then xa(t) to:

x,(8) = x_(£56) + h(t;¢) (8.1)
where h(t; £) is C2, chosen so as to render xa(t) odd periodic and, for convenience,

such that h(t) = 0 for t ¢ [— 3/2,&} , O<a<4/2 :

(K,L)
o

h(e) = (o) (=M (0 - x (0) (8.2)
with )x(t) of class Cz, equal to unity on [b,JT/Z], a<b. The residual of Q;(t) is:
FG@ = I m@© + 320 h+ 3 x (0) 0 (8.3)
since :X (xa)(t) = 0 . Using (7.41), (7.44) and Lemma 6.5 we obtain:
1 G I =oe¥®, 0 apl-fare]y - @
where z(;a) (t) = 0 for t < a.
We estimate next the soiutioné of the variational equation to (1.3)
around (8.1):
EX+2 k k+3%(D) x=0 (8.5)
For | t]| <C,, we use (7.4), &7.5) and obtain:
d2x

$X 427 & 43922y x=0 (8.6)
4 2 d 'ze

T

with:

/8

7e(T) = Gle) +v(@n/e! (8.7)

Concerning (%.6), we have:
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Lemma 8.1: Eqn. (6.6) admits of two linearly independent solutions which

for T €1.(&) and T sufficiently large, may be written as:
R(%) , ) i
ue) = [““’I?]E sin (5 +¢EN[ 5 B (6> 3(T55:3/0) + o(e 76, 172y
7.

, 1 (8.8)
7s(§)

cos(¥ +<p(¥)) (1 + ot /8 /2 (c)e"{r

[7s(z 2
R(E ) ) )
4
e

e
1
_ /2
[73( 7))
1/2 - =
cos(g+ (N oV 5, v ") =q, e (8.9)
Proof: At a given & , the solution u(t ) of (7.6) is fixed by two parameters,
RLO(E?), <_}>Io( £ ) which depend in turn on the initial conditions. The derivatives
u/ ’DRLO s 9 u/})#’.LO satisfy the variational equation. Using the chain rule,e.g.
= G L = (Pu/PR)(2R/ o¢) (» B .
up s Du/2k = (RU/OARI(RRAR )+ (dufe) (/DR ) (8.10)
we obtain from (7.35) eqns. (8.8-9), provided we show that ’DR/BRLO, 2/ pIo’

etc, obey the estimates shown there.

Now, using (7.23) and taking derivatives with respect to RI , we obtain

from (7.21-22) a set of linear equations for KL R’ .BRL/.)RL 9[ /> ‘{L
d . » cond Reds )b :
b Ror = Fl/a R g B (FD) + 2 (85R; I Rua ¥ agBRgIPy g 8.11)
d = n (;) ( » 1 . - "9 J 3
'Lf;qt'L,R = - ’12 RLR ,“" * by (FiRiG) Ry pot °1¢(?’R"f )(#L,R (8.12)
3
where a._ = 0(TRT '8, V2, '”* ; '”/S), a,, =0(Ra ), b, = O(R} "9/3,)”?\/ ,
IR ¥ v 14 1R?* Pir y 3
§“W8), b1 = O(RblR)' Using now:
- - ¥z (§) . z n
FR(F) =R (30 =t er (o) et L6 (8 (5.13)

! 7 =3/4 = !
Y, (8 - L f (1) 7, () b, LD (FY I8 7 gp
f& (8.14)

CFL,R(F)
we obtain a set of lirear inhomogencous equations for EI(F), Y](g-. ), with
initial conditions Fl(%— n) = ‘F](? Q) = 0; both the coefficients and the inho-

mogeneity have the order of magnitude 0O(a blR’bltP ). Applying now Gronwall's

1R%1¢
Lemma to the set of eqns. for ? ¢ D, ‘{/ ( ), we obtain:
max (¢ (¥), ¥,(¥)) = o<1§”2 w16

which justifies (8.8). Similar changes of variable (FL,¢(;) 5(92('7', ),(?DL"P(;) =

) (8.15)

1 + \{)2(;)) lead to the same estimate (8.15) for (}2’ ‘{JZ and thus to (8.9).
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The two functions (8.8-9) are linearly independent (W(ul,u2)~JRoL exp(—ZTZ)).
This ends the proof.
Eqn. (8.8) has a remarkable feature: the function J(i';F ;3/4) increases

in an interval of O(l/f‘) in ¢ to the wvalue f'_1/3

and then levels off, This
behaviour influences the Floquet exponents (see below).
The solution (8.8-9) of the variational equation (8.6) allows us to be

more explicit about the dependence on £ of the two constants RLO(E.), a?LO(EL)

appearing in the solution of (7.35). We define:

Ygser = degser + L adsg530 &2 (o) (8.16)
) _ Y .
Yer= ¥ (gie) (8.17)
3/4

and confine ourselves to the situation of small damping,h<e * (For the comnle-
mentary situation, we have to modify the definition of Y (& ),cf. comments
following (7.34)). The quantity ﬁ)(er) is different from ‘YOL( £), eqn.(7.33),

through quantities that have zero limit as ¢ — 0. We may then state:

Lerma 8.2: 1If b"< 83/4, ROL(éT), ¥ (€) are continuous functions of ¢

The proof of Lemma 8.2 is deferred to Appendix B. We recall that Lemma 7.1
establishes only the boundedness of ROL(&,), but states nothing about its beha-
viour as a function of £ . Ve use Lemma $.2 below in estimating Floquet exponents.
We call Ro = ROL(t.=O) and similarly f‘o. We point out that the limits RO,‘(O

? . . .
are independent of the law /A~'$?(or A~y They are in this sense, ''universal”

/
in the domain & 1ln < p —{&5/8

. The way in which they are approached is,
however, 'f dependent.
Finally, for the interval [C£,53/2], we have:

Lemma 8.3: If the damping obeys (7.42), the variational equation (8.5) has

on [Ci, 3/2] two linearly independent solutions given by:

L
(w) o~ =12 o cos -1/2 _=(w) -£t
xl»2 (t) = xa(t) exp( %} tﬂ(sin (6 € ) + o(l{} = Xl,2 e € (8.18)
with & of eqn. (7.39) and o(l1) is uniform on [C& ,33/2].
Proof: Clearly, we may wrige: (cf. eqn. (8.2))
~ _ (K’L)
Xa(t) =X (t) + v](t) (8.19)

with v,(t) supported on [Cg,b] , and of class C2 (b<¥/2). Changing in (8.5)
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variables to: 4

. , . -1/2 )
L JY} xék’L)(t')dt' » x(t) = »(t) xéA’L) expl-fg (t - Q7ﬂ (3.20)
(; .
we obtain:
2 - v 2 W2
£ Qng + pll + l 2 + E R[B (X, L) } h - (x (k L) 2] (8.21)

det

e

with R(#:) of (3.&1). Transforming to an integral equation, it is straightforward

to show that, if /* obeys (7.42), the ceparture of the solution of the latter

from a cos((ﬁ'él_llz +¢ ) is o(1). on [cg,i'/z] (if a,¥ are chosen to match

the initial conditions at t = C, ). Replacing &'

with ¢ brings corrections
. cP(8) . . _ e
of 0(¢. ), with P(S) of (4.42) (cf. Lemma 6.5)).This ends the proof.
We combine now Lemmas 8.1, 8.3 to write out an approximation to a solution

of (3.5) on [T € 38 572] as:

(a) —[1, (t;C¢ ) u (t;ﬁ) + 1( (t Ce) ‘{fwg(t;g )J exp('-/v/% t) '(8.22)

wiere "ki(c;cc),ﬁk R(t;Cg ) have the same meaning as in (5.42); in (8.22), the

(w)(t £ ) are linear combinations of tae x( w) in (8.18). We define:
W S 31/3 e '
$Cey = 3T 5378 Y J 575 du (8.23)
¢ u
which has the property that S(z‘)"ﬁ 0 as ¢ = 0, let
e w
IO= "*27-3 du = ‘ (1/3) (8.24)
u
[¢]
and
4/3
; ' (¢ LS 33 (200 8.25
Y = W (o) - qd(8) + 22 oer (8.25)

With this, we choose in (5.22):
1/16 .
) DI AL TN ___7_ 2 ,.-1/3j“_z_n2 ~=1/3
X, (t;6) = §11/2 sin [ Yﬁ»+\r (€) Ro Io) 7 R Io T +
a . -
cos[ ;E—+.? (e) --—— Ré Iof' 1/3] (8.26)

1/16 _
»(w)(t £) &/ un[r +‘f/(€) R I{ 1/3] (8.27)

%

1
a
The same arguments as in Lemma 5.3 allow us to state:
8 H ) . - 3/8 - J
Lemma 8.4: If the damping obeys (7.42), eqn. (3.5) admits on [aos, , 4 /2
of two linearly independent soluticns of the form:

*Ri,2(658) =[x 1(11)2(“"") ro(e 1)) exp(- £ o )= o R (ese) exp(- A t) (8.28)

The proof is the same as in Lemma 5.3. Finally, we have:
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linearly independent solutions of the form: (k=1,2)
x (t) =] loL(t;s) u (58 + )(i(t;ﬁ Ju (Tse) + )(0R(t;cg) U p(E5E)

+ o(€ 1/16)] exp[— ’%»(ti-ﬁ'/z)j;:; ;Ek(t) exp[— %— (t +7JT/2)] (8.29)

where: u (t3e ) = uko(t;e:) of eqn. (5.19), u

koL i(?;t;) are the same as in (5.18)

k

for T < 0; the solutions u (t; €) may be written as:

koR

b R (E56) =2, 2 (8) xp; (£36) (8.30)
-

where the ij(t; t.) are the same as in (8.28). The quantities akj(e‘:) have
limits as £ 0 and det(aij( )l =1.

The proof is the same as that of Lemma 5.4;it uses the continuity at £= 0
of RLO(E' ),\["LO(S), established in Lemma 3.2. Ve omit the details.

we have now all the requisites for the proof of existence and uniqueness
of periodic solutions, if the dampinz obeys (7.42). To improve xa(t), eqn. (8.1)
to XP(t) by Newton's method, we need (§.4) and:
Lemma 8.6: If &ln(1/e) =S h=< ¢ 5/8

112,017 = o713 67575 (8.31)

The proof is immediate, using the fact that Xk(t)’ eqn. (8.29) are bounded abso-
lutely by f_l/(’ (this value is attained at T~ 1/Y ,cf. eqn.(8.3)).

With this, as in Sect. III, eqns.(3.8), it follows that the conditions for
a ball of radius &9 in D (-3/2, ¥/2) around B?a to be mapped into itself are
(assuming the second term is dominant in (8.4)):

f']/B 2—5/8 max[gCP, {;3/16exp 'E a}{ X "L-l/:z -75/8 {:q‘]ﬁ | (8.32)

If (7.42) is obeyed, these conditions are satisfied, in fact for any q> 0,
provided the integer P in (8.4) is appropriately large and ¢ appropriately
small, Eqns. (8.32) aiso ensure contractivity of the mapping in eqn.(3.8). Thus

q

the existence of xP(t) and its approximation by ;fa(t) within €* is established.

The procedure of proving uniqueness outlined in Sect. IT may be applied

directly to our situation. Choose A= )LO (independent of € )<’/}‘/8 - (1/33%) lnf.

As in Sect. VI, we verify KB(f ,>\) = C], KD( s ;X ) = CZEZ_3/8, g(€) = e:l/z,
T(E€) = 4 (cf. eqn. (2.36)), S(¢) = 1;5/b. According to (2.33), if:
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lu(e )+ i?lﬁ(to)i«’MuS/S (8.33)

and if 4 exp(filof) < 1, the solutions u(t) of eqn.(2.12) starting at t=t_ in
2((M) (cf. eqn. (2.25)) tend to zero .as t=->« ., For § small enough, )o may be
appropriately chosen and Lemma 2.2 shows that, in each half period of the
external force, any solution x(t) lying in the domain D of (2.1) approaches
xP(t) so that u(t) = x(t) - xP(t) fulfills (8.33), for some €, This establishes
the uniqueness of xP(t).

We have thus proved:

Theorem 8.1: If 1nl < ax F1/4, eqn. (1.3) admits for |  large enough of a
unique periodic solution xP(t); it is uniformly approximated on [l-IY2, ﬂ/ZJ by
za(t;fi), eqn. (8.1), together with its first two derivatives, as well as one
wishes, if © s appropriately large.

Finally, we compute the Floquet multipliers of xP(t), using eqns.(2.38),(2.40)

and Lemma 8.5. We write (k=1,2):

w580 =€ 18 e ey V2 sin[ Yoy + 0 (0] (8.34)
where
() =L B 1 7 e ey v of !y (8.35)
(if a”,a21 # O, at least one of them obevs this), and (cf.(38.26),(8.27))
~C
/2l a2 2 -1/3 )
3( (€3t) =¢ JCLXP(t)] Y3 dt + 1’1(5) —%ROL(C)IO\{ (8.36)
£
It is true that, independently of the values of CIPRLI (cf. eqn. (5.48))
c; (&) c,(&) sin (0, (&) -0,(8)) =1 (8.37)
which implies that, if all(s.) # 0, a21((1) # 0, @l(e') - é)z( £) =
O(R_A(E.) rr? f2/3). It turns then out that (i=1,2), using
oL o L™
? - —]/2 . ]/2 .
Yy —J-n/f‘ 13 xp e aer e (8.38)
fil =c; sin \\((s:;W/Z) + Gi +1’LJ . fi2 =c; cos[AX( sy /2D)+ Gi+ YL] (8.39)
so that:
. (,+0 » ;
~ 2 -1/3 . 1 1% :
¥ =R (e) 1Y sin[X (£ /2) +——2—~+4L+;(£(5)] (e ) (8.40)

where (¢ ),d(¢ ) depend on the aij(s'). With (2.40):

Rl s e‘/%T’[Rng) 3 |ace) sinfce) + (o) sin®P ey -
! {2/3/R2 12 )1/2)] O (8.41)

o
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where
- Ry 0. +6
‘ \i/(g.) = \({L(g) e Ce) + Y1(9)*‘_‘22; R(z)L(g,) Io‘f 173, --1-2 2+!£2(s:)

b (8.42)

Eqns. (8.41-42) display the effect mentioned in the introduction (cf. eqn.
(1.17)): as a function of ¢ , Y(€) increases without bounds and passes the

12 13,

value k3 in approximately equidistant points in the variable &
distance in fﬂl/3 between two successive passages through zero (mod 3 ) is

given by (1.16). As €- 0, d(¢ ) has a nonzero limit, and thus there are intervals
where the multipliers in (8.41) are real. The maxima of'/rl,z(t ) are approxi-

mately equidistant (better as ¢ ->0), with a spacing given by (1.16) and a

magnitude equal to: 9

~ E 2d RO I
F nax (2 = expl-/55) Y7 (8.43)
Al ~ £ . »
Eqn. (8.43) shows that /‘max( ) becomes of the order unity if
/ g7 ¢ Ino 3 In In =+ ... (8.44)
i.e.
~ 1
A s o T (8.45)

Clearly, the domain of validity of (8.43) is,strictly speaking, given by

~

(7.42); there, f‘max(c ) = 0 as € 0, We do not expect the simple law (8.42)
to retain its validity if thax(it) ~ 1, Indeed,the bifurcations occurring

from xP(t) are of different types according to whether j:max( ) = +1 or =1,

the former case leads to saddle node bifurcations, through which xP(t;s)
disappears; the latter to flip bifurcations (appearance of stable periodic, but
not odd periodic solutions). The curves }:(E';f-) = +] are expected to meet at
a cusp in the [, A plane, which is not érue for /:({ ;f-) = -], However, in
eqn. (8.44), the situa;ions ;:= + 1 are completely symmetrical. Thus, although
it is too simple to describe bifurcations, eqn. (8.43) makes it plausible

that the loss of uniqueness and stability of xP(t) occurs in the domain

i
A ~const In] of the parameter plane.

This closes our discussion of periodic solutions of Duffing's equation.

.



IX. Some final remarks:

We have presented a detailed analysis of the periodic solutions of Duffing's
equation (1.1) at large forcing and damping. Depending on the way in which
the damping A increases with the outer force { , the appearance of the nerio-
dic solutions varies; we have derived above their asymptotic expansions in
those domains of parameters where their uniqueness can also be demonstrated:
A/ In["-—w as ["->» ., With slight more care in our arguments, it is plau-
sible that we can extend the domain of uniqueness down to the asymptotic 'line"
A~ k1In D" , for some large k.
/3

If AT 2/3, the periodic solutions of (1.3) are close to (sin t)l . The

difference of the periodic solution xP(t; ') to (sin t)l/3 may also be examined

in their (corresponding) Fourier coefficients. The coefficients of (sin t)]/a

fall off like n_4/3; those of the periodic solution drop off exponentially,

since xP(t;F ) is holomorphic in g = exp(it) in a ring around 13| = 1. The
1/3

first coefficients of xP(t;r‘) and of (sin t) are almost identical; the

difference in the high coefficients is due to boundary layer corrections. As

~1/4

an example, at small damping (A < | x,(t; ) oscillates with increasing

)3 P

-y

frequency @ as i'-— .~ in a time of 0(1/ A ) to the right of t = 0; we expect
thus a structure in the spectrum of the high Fourier coefficients, which moves

to higher ¢ as "=~ , We can be more explicit about this motion, in a rough

approximation: the contribution to the Fourier spectrum of the oscillations

may be written: ( A =0 53/6) (cf.eq.(7.35))
ua My
F(w ;¢ ):j e exp(iw t + 143, o T2 4 ?5‘5/16‘1 exp ( - ¥Z + i AT
ce L
i ~ 43 -tle
+ 1T wo)‘z K4 9.1)
. . . 5/16, .
As '{——’0, the last integral is convergent, so that F(v ;¢ ) H £( X) in

this limit. This shows there is a structure in the spectrum which decreases in
1/4

magnitude staying selfsimilar and moves towards frequencies increasing like [ .

This is one example of many scaling laws of xP(t;\") which have their origin in

.

the boundary layer structure of (1.3) (see Ref.7‘for a more detailed discussion).

Clearly, the reason why boundary layers appear is that no harmonic term is
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r 2/3

present in (1.1). If a positive term existed, increasing like , then, as

['—w= , eqn. (1.3) would reduce to

cx + x3 = sin t (9.2)
The solution xoo(t) of (9.2) has bounded derivatives of all orders, for all t
and the periodic solution of Duffing's equation is obtained by direct iterationm,

similarly to the outer expansion.

If an harmonic term independent of | is present, then the limiting solution

/3

of (the analogon of) (1.3) is again (sin t)1 . In this equation, the harmonic

term is O( £ ) and does not manifest itself in the first two terms of the outer
asymptotic expansion. In the inner expansion, the harmonic term is of the second

order in the appropriate small parameters, if A ¢ f‘1/4 (it is O(‘ﬁG/S( F/[~8/5)),
3/ ' "

otherwise of 0( & 4). Thus, the analysis\of this paper may be repeated without

major changes iﬁ an harmonic term, independent of (" and of either sign is
present in eqn. (l.1).

The numerical tasks that are left in the description of neriodic solutions
of (1.3) are related to the boundary layer equations and to the determination
of the transition mgtrices aij(s ), eqns. (5.30), (5.44), Using Lemma 8.2, the
two quantities d, Ro appearing in the expressions for the Floquet multipliers,
eqn. (8.43),may be evaluated at ¢ = 0, i.e. we have only to consider eqn.(A.31)

and its variational associate. We obtain d = 0.38, RO= 0.86.

The expected logarithmic increase with I° of the curves max(A J') =
; MéE
. , ~1/3 . . .
const < 1 is a consequence of the factor Y /3 in the denominator of (8.43).

o =174

For small damping,'fﬂ'EB/8 ~ . The values of I” at which such ar increase

is practically visible are, however, quite large: one criterion for this is

that the ;fl/a increase of the phase of the solution of (A.31) be clearly visible

.{4/3

for values of ; less than 1/ , 1.e. before the effect of the damping sets

. . . . ; . . 3. .
in. Numerical experiments with (A.31) show that, e.g. ?»v 2-3 x 107 is annropriate;

. . : - 1
equating this to l/{ 4/3 leads to [ ~ 10 O.
On closing, we point out that some of the results we obtained (e.g. Section

VII) retain their validity even-along the line & ~«1ln I" , There is thus some

reason to believe that the bifurcations presumably occurring there may be amenable
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to an accurate treatment. We hope to return to this question in the future.

Acknowledgements: I thank Prof. G. HBhler for several discussions and questions.

Appendix A: Proof of Lemma 7.1.

The proof proceeds via a number of Lemmas that are displayed below. The
object of interest is the energy associated to (7.9):
3 h]( £56) 4

2 2
(p:¥:6) = L[4 o (s .
E(p; 5 €) = 2(513) + 55 (D + R(E;¢)) +%‘,‘ 5t ?3/4 h,(£5¢)  (A.1)
! ¥ 12 §

which is positive definite for all § sufficiently large. It is true that:

£E=_Zf_, B._}_\’. ﬁ.‘i_.h() pid b, (F)
qe }1/41‘(5)( ) 73 T3 d(«( s3/o MEERET 3T (4.2)

The first term in (A.2) is strictly negative, so that:
2 . 3 dh 4 dh

4 p_ 4 _p | _ p_ _] , 2
¥ ©7TdF s giirs (h (F) + 0 d; M = 15 77 (h(E) +O(FZ—;—)) (A.3)
: 3 :

With (7.10), the terms in brackets are bounded from above and below on Iy(a ) by

positive constants Ci<i A i i=1,2, independent of ¢ , for small ¢ . Integration
cf (A.3) does not lead directly to the statement of the Lemma since it is a
priori possible that the integral over the cubic term is negative divergent. This

-4
1/3 , for some & > O,

occurrence is forbidden if we prove that |pl< const ?
The statements belowjustify such a bound (Lemmas A.4,A.5), essentially as a

consequence of the oscillatory character of the motion.

It is convenient to change variables to:

2 r . 3
dw , dw ( E_ + 2)/4 ho(; )) + w(l o+ Kl(‘gg)) + wz h](\f;s:) + %- hz(?— ;€) =0 (A.5)

K, (537) = k(55T - 2 ~"2+-31’I;‘5/‘*ho(;) (A.6)
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2
Eqn. (A.5) has the merit that the coefficients of w", w3 are very close to

constants,if ? €I.(&). The first statement is:
Lemma A.1: The solutions w( §) of (A.5) are bounded, uniformly with respect
to £, for ¥ ¢ 15(6 ).

Proof: The energy function of (A.5) is:

Loy = () L, (1+"(§)))+-‘1 6 + o ®)| BRI
; df h, (& 5 0y 2 = E{E? v H(E ;W)
(A.7)
which is positive definite in the (w, dw/d7 ) plane. Also:
aL _ _ (dw % 3 _.2_[ h(g)J ._3_ dk] + _"f_ddl +"‘ll:it.l.2_ (A.8)
dz 17 174 2 dt 3 3¢ 2 dt .
i ! ’
But one verifies easily that ]w|3, | w ? const 'L(;), for some constant, indepen-
dent of § . Thus, (A.8) implies:
dK dh dh
dL | 1% 1 2
3 < cpnst L(§) ( 2R +d§, +d§ ) (A.9)

Integrating (A.9), we see that L(F ) is bounded for F € If , which proves Lemma A.l.

We conclude:

\P(§)|< c ?3/8 (A.10)

for ? ¢ If(é ), with C independent of ¢ (but not on the initial conditions).

The next Lemma states that the solutions w(g ) of (A.5) are oscillatory,
if the energy is sufficiently large. Let to this end:

t(?) = max["{?-l/a,?—lj (A.11)

and I ;( £3;C) a subinterval of I;

holds, for a sufficiently large constant C. Then, we have:

(¢ ) where the inequality Ctz(fi)<: L(F y< LO

Lemma A.2: As long as Eﬁe E?(S ;C), there exist constants C],C22>O, indepen-

dent of ¢ (but depending on Lo and C) so that, if ¢ 1is small enough:
w(¥ ) o=
at points § ¢ 1 with ¢ <% —} < C,.
n ¢’ {n+l n 2 .
Proof: Consider the family of potentials, with ?' a fixed parameter:

— 2 3 4
V(s €)= ‘—“2 -h (; L) + 12 2(; (A.12)

Using (7.10-11), we verify that, for any g-e IF(E ), provided ¢ 1is small enough,
the motion without damping in pdtential Vo(W;; ) is oscillatory. If the energy

is less than Lo’ then the period of the motion may be bounded from above (because
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of the harmonic oscillator part) and from below (because of the bounded energy),

uniformly with respect to ? . We compare then motions w(? R wo(;E) of (A.5)
and in the potential (A.12), with §= i(o)bwand without damping , starting with

(o)

the same initial conditions at % = ; . Since both motions are bounded for

; € I; :

DV (0) Vo 2
| = SE) - S W) e X alv - | (A.13)
for some Lipschitz constant QP(LO), uniform in .gi.lt follows then from Gron-
wall's inequality that: P v
sup(Ju(y) = w (P law/ay = av/a¥l) < ey e(3() (A.14)

over a ; interval of length 0(1), since t(;f) is monotonically decreasing.
With (A.14), we can compare the peériod of w(?f) with the distance between
two successive passages through zero (in the same sense) of w(%’), as long as

- L T ! = 31 = - :

;.é I .Let wo(;o) 0. Since w(?ﬁ) (w Lo)(§') + wo(? ), the zero of w(? )
is contained between the two roots of:

w (%) =+ sup lw =W | (A.15)
° ol

(o)

lying on opposite sides of ;é. Assume now L(F

{

) > C ¢t ( ; ), with, e.g.
C 22 CZ(LO) of (A.14). Further, we can assume t( ? )) is so small that, for
7 € E, the bound (A.14) implies: VO((w—wol; ?) <'C2(LO) t2(‘;(o)). This allows
one to bound from below Idwo/dg'lover the interval of ; where the roots of

(A.15) lie:
2

(;%9—) > 2 (16 - day E5 > Ly ) (4.16)
With this, using the mean value theorem over the above interval of ;:
\wo(r( )| > inf ldw/d;{-l);— SR AN ;0)1/"15- ;éj (A.17)
which gives, with (A.15), the desired bound on ;l— r{é :
15-%0 [< ey Ly ™2 ey () (4.18)

Choosing now the constant C in the definition of I( ?;C) or F(o) sufficiently
large, the statement of the Lemma follows.
We call 1;n3 a (possible) sequence of zeros of W(E;) in the same sense, for
; c f(e;;C). With a comparison similar to the one of temma B.2, we conclude

1/2
that the time taken by dw/d? to decrease from the value (2L(§ » / to, e.g.
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2
(L( ;n)/Z)l/" is bounded from below by a constant Cl"

We describe now the change of the energy L( ?; £ ;w) with ;
Lemma A.3: For any {0, there exists £,7 0 so that, if £€<s , L(§;¢)

reaches the value § at §= E(TIC [;o,\f—z‘/:;]and stays less than { for € 7 E],

¥ e Ig(ﬁ),

Proof: Assume L('g): Sl at§= %f]. Integrating (A.9) from ;1 onwvards, we

obtain that L(; ) < const» & . for ?’ ¢ If(e ). Thus, it is sufficient: to show

that, for ¢ samll enough, L({) reaches any given $ , at 3;4 < 1y .

1/2

A
For §<:) 4/3, t(§t) = 1/§ . We choose first ¢ _ so that 1/¥< ¢/§7'°, 1f

the motion is such that L(f. 3€ ) < C/gz, for large ¥ , the statement of the

Lemma follows. The only possibility left is that, for Fi(s ) < ? < 1{ _4/3, L(%)
> C ?—2. The motion is then oscillatory (Lemma A.2) and we can estimate in

more detail the change in L(? £), e.g. between two successive passages through

zero, in the same sense., We integrate (A.8) and use the fact that :ﬁw \/2,[wl /3,

]w\q/IZ < ¢, L(§), for some Cy» independent of  :

o oo o

- _ dwl" ] 3 2?)L . ] J 1 dI\ o, d ZJ
ME ) T B )7 j(;{g) [T? L n ()] - ¢ ;;L(t 7% Gray ravler
Cy LCE )3/ (4n) + 2?$‘/n]/4 - ¢, L} (/% + £3/4n1/2) (A.19)

The lower bound on the first integral in (A.19) is a consequence of the oscillato-

ry character of the motion. For the second term, we have used (A.9). In both

{—4/3

terms, we have used Lemma A.2 to replace ?n by n. £gn. (A.19) implies, for ;<
LOE o)< LY /(1 + Cg/m) (A.20)

for some C > 0, independent of £ . Iterating (A.20) over k rotations:

K=t

L(§_ )< L‘fnﬁ-!'c.“ + o/ (n¥i))” T« ¢ L(;‘n)/k (A.21)

6

for some constants C6,o«'7 0, independent of & ., Clearly, L( Fn+k) becomes smaller

{ { 1/ . . :
than in ( 4 /const) steps. It is sufficient to choose & so that these
steps take place in [_Ago’ 1Y 4/3.]. This ends the proof of Lemma A.3,

The following Lemma states that p(T ) decays exponentially for T > 1/} . Let

4
- 17d , 2 3 2.2 3
Lu(t) =.;Zl-€‘-‘z‘-+z‘fuj +‘§u ‘( + ~Zu +% (A.22)

with ‘z (z) of eqn. (7.5). Then:

Lemma A.4: If 1§43

{
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[pCED] |dp/ae | < =55 [B (/Y ) /2 e‘kb’z(;) (A.23)
for some k 0.

The proof is donme by changing u = v exp(-k Yz ) in eqn. (7.6) and using a
Liapunov function E ('c ), similar te (A.22) and Lemmas 2.2, 2.3, We use then eqn.
(7.8).

The energy equation (A.2) allows us to make the rate of decay of oscillations
more precise than in (A.21). For ‘E in E.( €3;C), we write: (dw/d‘g ) ( Fn)':;mn(a Y.
It follows then that the maximal value of w at the n—tn turn is w _.mn(tf)(l +

3/ -"/1
)) (? <\ ). We can then state:

3/6-4

O(n
Lemma A.5: mn(i ) < const/n , where & may be made as small as one
wishes if Fo is large enough and £ small enough. The constant is independent
of & ,
Proof: We multiply both sides of (A.2) by exp L-—' g)— l\({ ))) and integrate

between two successive passages through zero of p(? ), at }n ?nH:

ECF ) = B(E ) exp R(F )+ E(%)LEXP(’K(%H)) T exp ('K(F n))] <

r,v!'_\ 3
ot J‘ l J(;)’ ] _ o dh1 ) . m (A.26)
exp (- K ) 5 7 L () # q‘“d"?—) < DT '
2
where we have used Lemma B.2 and |p(¥ )l <m n3/° to estimate the last term.
Further, using Lemma B.2 and (7.12):
: - RSN T | )
t I\(%(—n) I\(\g(-'n'i-l)'\ Dl( n3 * ;5777? (4.25)
exp [ K(\fn) ’ < D2 ; (A.26)
with Dl’ D, independent of ¢, so that (A.24) may be written as:
3
. D
1 2 3/6 1 2 3/4 _ 3 2 3[4 1, _\i_ n
—z—mn+l(n+l) Fm n = (——3"" 5/4 < D-—-——]/4 (A.27)
ol n n
This means:
1 3 "n -3 ~ -9/4 Tntl, -1 3/4]
mn+1< anl—(z—r;—ZD—r-l—+0(n" ,)'n )yl (1 o+ :—n:) (|+ (A.28)

But mn“/mn =1 + 0(1/n) and Lemma (A.3) implies that 2 D m < 3/4, for n large

enough; in fact, by Lemma A,3, the second term is as close to 3/8 as we wish,

if we let & be small enough. Iterating (A.28), we obtain:

3/8 -4

m < constm / n (A.29)
n n

o
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which proves Lemma A.5.
The decay (A.29) means:

£

| p(7)| < c¥ (A.30)

This 1is (as expected), weaker than C §—3/d, which is obtained if L(lii.) < C tz(F).
o . . 03 . Ys )

Multiplying (A.3) by exp(—K(‘% )) and integrating up to I/Y , we obtain E(1/¥° )
< const, independently of € (if it is small enough). Further, in eqn. (A.22),

8§ -4
[Eu(l/ § )JI/Z < Y 1/3 , so that, with Lemma A.5 , the integral of the cubic

term in (A.3) from ~4/3 to C}3/4 ¢ "1/2 vanishes as ¢ -0,
This ends the proof of Lemma 7.1.

Before closing, we make the following remark: if ¢-> 0, eqn. (7.9) becomes:

2 3
2 C,p C,p

d72 3 /8 ;3/4
to be solved on [;o,w ) . The difficulty in estimating the asymptotic behaviour
of the solutions of this equation is that the terms containing powers of p larger
than unity do not drop off in an integrable manner as ;ﬂw . For this latter
situation, standard theorems are available (Ref.g,p.9l, Ref.lg,p.344), according
to which p(? )= A cos(?’-&- q‘,‘o) as ?vm . According to Lemma 7.1, the nonintegra-
bility does not destroy the ultimate boundedness of the solutions: it only leads

to a phase that increases indefinitely as ;T»n» :pf ?) = A cos( ; +(}L)(F) + 4’()),

. g 1/4
Cr(\(g)rvg .

Appendix 5: Proof of Lermma 8.2

e call uo(T ), u{(r) the solutions of (#.6) corresponding to ¢ =0 and ¢
(small); the initial conditions (7.3) are different by O('Y)\) (c£.(4.33)). On a
finite interval of values of T, uo('(),u{('c‘) and their derivatives are still
different by O(f). Let then ?.‘o be such that ( c,R(?; ’XA)"? 0 (cf. eqn.(4.33)), for
Ty, and ‘;‘ = ?(Zo). Let po(?—(’),pg(g) correspond to uo(‘c‘),u!(’f‘) by (7.8).
The proof consists of the justification of the following statements:

iy v —1/3 . . .
(1)if %el{o,af / ] ,( pg(;) - po(;.),‘* 0 as ¢ 0, uniformly with respect

to '?; the same is true for dps("g)/d? ,de/d‘E/; (ii)'Pz(aY ‘1/3) + (dplldpz(afi/B
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- REL(s)]~~aO as £ 0. In Appendix A, we showed that [pi + (dpo/d} )2] (a{'—1/3)
—> R.0 as ¢~0, so that (i) and (ii) establish the claim concerning RoL(E'); we
show then (iii) }%T Y(e) = YV (0).
s

For (i), we subtract from (7.9) (written for »p.) é similar equation for Py

With:
Ap = p,- p, (B.1)

we obtain an equation for Ap, whose linear part is the variational eqn.(8.6),
if we let x(7T) = p(2) Z ( )l/2 and £ = 0, We use next the two solutions (8,8-9)
of (8.6) with € =0 (and the factor '7_1/2 removed) to obtain an integral equation
for Ap, using the initial conditions (of O(T\)) at Fo' We use then the estimates
(7.10),(7.12) and the fact that, by Lemma 7.1, pa,dpi/dﬁf are bounded on I;(g),
uniformly with respect to £ , to show by a contraction argument that the integral
equation admits of a solution with jla pl =O(X\2/3) on [fo,x‘-]/;]. Taking deriva-

tives, one also obtainslld/d? (A p)U= O(‘K2/3) there., Details are given in Ref.23;

this disposes of (i). Intuitively,because - (most of) the solutions of the varia-

1/4

tional equation with 3 =0 increase like F , the distance between solutions of(7.9

with initial conditions different by O0() ) becomes of order unity only at ‘FNV{ —4,
whereas the effect of the damping is manifest only at '{ ‘4/3. Thus, we expect
(i) to hotd at E~Y /3,
Now, with eqn. (7.24), exp(—s(‘f_W/B)) =1 + O(X’3/4), so that (7.31) implies:
ROY 356y = r (o) + oY 8, Yin /) (5.2)
which is statement (ii).
As for (iii), we notice first that (7.32),(7.33) and (8.17) imply that, at

R S
v T30y - Yoy = o3 (.3)

for all £ 7 0 and small enough. On the other hand,llAp,dAp/d§2” =o(‘f2/3) implies
that:
L 87135y -4 7350 = ocf 273 (B.4)
and it is true that:
3Cf5¥ 735308y - 503¥ 3378 = oY 213 (B.5)

Egns. (B.3-5) imply (iii). This ends the (sketch of the) proof of Lerma 8.2.
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