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We have investigated approximations to Duffing’s equation x + 24x
+ x? = I" cos t and numerical solutions for large values of I and
a wide range of 4, including the limits " - o, 4 = ¥, The re-
sults are also valid for the equivalent equation X + 204x + x3® =
cos ot with 2 = 1/P%, which describes the motion of a particle in
a slowly time-dependent potential V(x,t) = x4/4 - x cos at.

x(t) is represented as a superposition of a slowly varying back-
ground x,.(t), which approximately corresponds to the location of
the minimum of the moving potential and u(t): = x(t) - x.(t),
which is a rapid oscillation for small 4 and large I'. x,(t) is
defined as the solution of the relaxation equation 24&, + x2 =

I cos t.

A linearized version of the equation for u(t) is sufficient in a
large domain of the I'yd-plane, including the above mentioned lim-
its for a>0. For small values of 4 and large I, the harmonic

solutions can be described by an adiabatic approximation outside
thin boundary layers around t = n/2 + Nan, where methods of singu-

lar perturbation theory have been applied.

Finally, we present some observations on "chaotic" solutions at
large " and 0 ¢ 4 < 0.3. OQutside the boundary layers, u(t)
shows a regular behavior which is a damped anharmonic oscilla-
tion, slightly modified by the adiabatic law. However, in each
of the boundary layers, the phase and the amplitude are suddenly

changed in an apparently irregular way.




1. Introduction

We consider Duffing’s equation [1,2] in the special case where

the force does not have a term linear in x
X + 2dx + cx® = a cos wt . (1.1)

Since we are interested only in quantities invariant with respect
to scale transformations x-~ax, t-pgt, two of the parameters d, c,
a, w can be chosen equal to 1. We shall start with c=a=1

(x' = dx/dt):

x" + 2Dx'+ x°® = cos at (1.2)
and use later on c=w=1

X + 24% + %% = I cos t . (1.3)
The relation between the parameters and variables is

D = A/P% =40, = 1/P% , t = at, x = <8 (1.4)

Equations (1.2) and (1.3) are equivalent from a mathematical
point of view. However, the decoupling from the external force
(r-0) is obviously easier to deal with in (1.3) than in (1.2)
where one has to consider Q-«, in particular in numerical calcu-
lations. Furthermore, it is convenient to have a fixed length of
the period of the external force for investigations of the depen-
dence of the shape of x(t) on the parameters and for Fourier ana-
lyses. On the other hand, (1.2) has the advantage to lead from a
physical point of view to an ansatz for the solution in the adia-

batic limit of small gq.

It is our aim to study in a large part of the parameter plane

(r4 or 2,b) harmonic solutiorns, i.e. periodic solutions which



have the same frequency as the external force. The starting
point is a quasistatic approximation which follows immediately if
one considers the moving potential well belonging to the force in
(1.2) in the limit of small n

V(x,t) = % x4 - x cos nt . (1.5)

The shape of this potential at t=0 is shown in Fig.1.1.

Fig.1.1 Shape of the potential (1.5) at t=0.

For small values of @2, the potential well generally moves slowly,

so one can apply a quasistatic approximation:

x(£) = xp (8) + x_ (£) 5 x_. () = (cos at)h , (1.8)

where x,;,(t) is the location of the minimum of the potential
well (1.5) and x,4.(t) describes a damped oscillation around the
minimum. The frequency of this oscillation is independent of 2
and therefore becomes large in comparison with f as one approach-
es the adiabatic limit. An estimate for the decrease of the os-
cillation amplitude during a half period Ta/2=nt/2 of the externsal
force is given by a factor exp({-DT,/2).




L

Let us consider for simplicity the case where exp(-DT,/2)<<1,
i.e. the particle is sitting at the minimum for some time before
Xpip(t) changes its sign at t=Ta/4+NT,/2, N integer. At these
values of t the velocity x,;, is infinite. Due to inertia and
damping, the particle cannot follow immediately. So it finds
itself in the moving potential well high above the location of
the minimum and starts a new damped oscillation. This remark
shows that the above description of the motion has to be supple-
mented by a special calculation for the small time interval dur-
ing which li.,nl is large. One obtains in particular the height
of X,5¢(t) at the beginning of a new half period of the external
force in addition to the frequency, which follows already from
the potential (1.5).

This simple picture is qualitatively confirmed by a numerical

evaluation of the Duffing equation. Fig.1.2 shows a harmonic

solution for n = 0.02.

A X

.

Fig.1.2: x(t) and x4a4.(t) for @ = 0.02, D = 0.025.
The arrows point to the amplitudes belonging to t=T,/4.




All numerical calculations have been carried out on a personal
computer IBM AT, using the 4th order Runge-Kutta or the 4/5 Runge-
Kutta-Fehlberg method. As a check of thé\reliability, the calcu-
lation was repeated if this seemed necessary with a smaller step
size. The duration of a calculation is in general of the order

of a minute, if one uses the mathematical coérocessor and Turbo-
BASIC.

. Our aim is twofold:

i) to derive asymptotic expressions for the harmonic solu-
tions in the limit r+e under different assumptions on 4(r),

ii) to determine the region in the I',d-plane where the har-
monic solutions can be described by approximations derived from

an improved version (5.1) of the superposition (1.6).

We start in §2 by approximating the potential well (1.5) near its
minimum by a parabola and treating quasistatically the motion in
its neighborhood. The behavior of the solution near the times
where X,;, is infinite is treated in §3 in the special case where
the damping is so large that the inertia term x in (1.3) can be
ignored. This leads to the relaxation equation (3.3) which de-
pends only on p=F%/24. Using singular perturbation theory, we
obtain an approximation which approaches uniformly the exact be-
havior in the limit of large p = F%/ZA. The results are checked

by numerical calculations in §4.

In §5 we introduce a new form of the Duffing equation, which is a
differential equation for u(t)&= x(t) - % (t), where x,.(t) is the
exact solution of the relaxation equation. In §6, using numeri-
cal evaluations, the magnitude and the t-dependence of the vari-
ous terms in the equation for u(t) is discussed in different
parts of the I',d-plane and support is given to the simple super-
position (1.6): In §7 we discuss the asymptotic behavior of the
harmonic solutions for large I, A=Fa, a>¥%, and argue that a lin-

ear approximation to (5.3) is valid in this domain. In §8 we



discuss the domain A<<F% and the asymptotic expression for the
periodic solution in this region. Finally, we add some remarks

on the Fourier expansion (§9). A summary is given in §10.
2. The quasistatic and parabolic approximation
The potential belonging to the force in (1.3)

Vix,t) = % X4 - xI" cos t . (2.1)

has its minimum at

X (D)=(" cos £)% V() = - 3 cos )% . (2.2)

We use the parabolic approximation

Vix,t) =~ Vmin(t) + %xz. (x-x

min )? (2.3)

min
and find for the frequency of the oscillations in the potential
well, neglecting its motion

w? = 3x2 = 3 F% (cos t)% - 4% (2.4)

osc min

The number of oscillations in a period 2w of the external force
is estimated from the average of Woge Over this interval, ne-

glecting 4% which is justified if I is large:

n = W = 1.42 P% . (2.5)
osc av

The damping leads to a decrease of the amplitude of x,,. by a
factor of exp(-md4) in a half period of the external force which
agrees with Fig.1.2. As noticed earlier, the amplitude of the

oscillation cannot be determined from these considerations.




For a quantitative test of the simple approximation we have cal-
culated the number of oscillations per period 2n by counting the
number of zeros of x(t) per half period in a harmonic solution of
the Duffing equation, using a numerical evaluation. Table 2.1

shows that the result is more accurate than expected.

%
r Bosc nosc/r
107 305 1.41
10¢ 141 1.41
108 65 1.40
104 29 1.35
Tab.2.1: The dependence of the experimental number of oscilla-

tions per period on I' for 4=0.5. The prediction for the value in
the last column is 1.42 from the average of wgy,4, at large I'. An
average of w . gives the factor 1.46.

If we keep ' =10® fixed and consider increasing values of the
damping parameter 4, we expect a continuous transition to a
relaxation process if 4 reaches the order of w,,. Then the
particle approaches the bottom of the potential well without
oscillations. The x-term in the differential equation becomes

negligible.

A further increase of the damping parameter leads to a motion in
which the decomposition (1.6) is not useful any more. Instead,
one has forced oscillations of a particle in a small x-range
where the x®-term in the differential equation is almost negligi-
ble. It plays a role mainly in the initial value problem, where

it forces the center of the oscillation to move slowly to the

origin.




We show in Fig.2.1 how the phase portrait depends on 4 at fixed
r=10%,. 1f 4 reaches the order of 104, the shape of the phase
portrait approaches a circle and x(t) ~ -Ir'/24 sin t (see eq.

(3.3)).
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Fig.2.1: Phase portraits for harmonic oscillations at I'=10*% and

Increasing values of 4. A suitable scale factor was used for the
ordinate. The bottom figure shows the shape of x(t) for 4=250.
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Another graphic representaﬁipn of the motion in the parameter
range where the present approximation can be applied is a plot of
the energy E(t) versus x, where

v?

E(t) = 7+ V(x,t) (2.6)

and V(x,t) is the potential (1.5). If 4=0, E is the value of the
Hamilton function and one can calculate the adiabatic invariant
(see §7).

Figure 2.2 shows the potential at t=0 and n, the path of x,;, and
the curve belonging to the harmonic solution. One can clearly
see the damped oscillation. The intersection of this curve with
the ordinate occurs at an energy small in comparison with |V, |

if r is large.
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Fig.2.2: Plot of the energy E(t) vs. x, eq.(2.6), for a harmonic
solution. I=104, 4=0.75.



3. Harmonic solutions of the relaxation equation

We start our systematic investigation of the Duffing equation by
considering a region where the effect of the Xx-term in the dif-
ferential equation (1.3) is small or negligible.

The scale transformation

x(t) = MBy(t) (3.1)

leads to the differential equation

ar

%Z +y = p(cos t - y¥) , where p = gz . (3.2)

For constant values of p and increasing 4, it can be expected
that the "inertia" term with the second derivative becomes negli-
gible in the steady state, although it is always important in an
initial value problem. In this paragraph, we shall neglect this

term and consider the relaxation equation

= cos t - y: H xr(t) = r%yr(t) . (3.3)

b|“‘<-

The effect of the inertia term will be discussed in §4.

Equation (3.3) shows immediately an impartant property: in the
region of the I'yd-plane where the approximation is valid, the
shape of x.(t) and of the phase portrait depend only on the combi-

nation of I and 4 which enters p. This is a scaling law.

Next we consider large values of p. Equation (3.3) suggests that
the term §/p.on the left hand side may be neglected and the solu-

tion approaches the shape
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v, (t) = (cos )8, x (t) = (I cos )% = x . (1) . (3.4)

min
As discussed in §1, this cannot be a good solution at all t, be-

cause the particle would have an infinite velocity when Xmin

changes sign.

Therefore, it is necessary to discuss the solution of (3.3) for
large p more carefully, applying the methods of singular pertur-
bation theory [3].

There is no objection against the solution (3.4), except in small
time intervals around the zeros of Y, Which are called the bound-
ary layers. We shall derive in this range a more accurate solu-

tion, which joins smoothly to the solution (3.4) outside this

interval.

In order to have a simple notation, we introduce a shift of the
time scale by 3n/2, such that cos t is replaced by sin t. Fur-
thermore, we consider only the time interval around the boundary
layer at t=0. Since, for large p, the boundary layer is very

thin, sin t can be replaced by t.

Now, instead of (3.3) we have to study

Vo= p(t - y2) (3.5)

in the boundary layer for large values of P.

The method starts with a scale transformation

t = t/p% S AR q/p% . (3.86)

Since we consider large values of p, the transition from the

boundary layer to the range where (3.4) is used occurs in the




/
asymptotic region of v. The transformation (3.6) eliminates p,
so we arrive with g'=dg/dr at

n' =T -, (3.7)

The problem is to find a solution fg(tr) of this equation which
behaves as t% for v +» +» and can therefore smoothly join the so-
lution y”=(sin t)% (i.e. (3.4) with the shift of the time scale),.

Although (3.7) looks simple, it can be solved only numerically.
It turns out that all solutions fulfill the boundary condition
for v » ». However, for v » -» almost all solutions go much more
rapidly to « or -« and only one solution has the correct behav-
ior. Figure 3.1 shows the shape of this solution and Table 3.1

givea the values of its parameters.
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Fig.3.1: Solution g(v) of the boundary value problem of (3.7)
and related curves.
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n(0) = -0.752137 , n(1.095) = 0
n'(0) = 0.42549 , ”éax = 1.365 at v = 1.45
1/9_ = =
(7 q)max 1.292 at 7 0.43
decrease to 1/10 at v = -0.59 and +2.14
n"/n': max = 0.988 at v = 0.89, min = -2.27 at v = 2.12

n": max = 1.00 at 7 = 1.095, min = -1.72 at 7 = 1.90

Tab.3.1: Parameters of the solution of the boundary value
problem of (3.7).

Now we go back to our old time scale and time origin and make the

following ansatz for the improved solution of (3.3) for large p

[3].

y:(t) = (cos t)% - (t—3n/2)% + yc(t) (3.8)

(cos )% + y_(t) ,

where

~3 %
e “n [p”(t-3m/2)] . (3.9)

yc(t)

Within the thin boundary layer at t =~ 3n/2, the first two terms
in (3.8) cancel each other, so the solution is given by ye(t).
Outside the boundary layer we are in the asymptotic range of
n(tr), so the last two terms in (3.8) cancel each other and S
Equation (3.8) solves the problem approximately only in the
neighborhood of one of the boundary layers. An approximation to
the periodic solution of the relaxation equation (3.3) is given
by

yr(t) = } ya(t—Znn) - } ya(t—(2n+1)n) + (cos t)% . (3.10)
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It can be shown that the sums converge and that in the neighbor-
hood of the transition points the corrections are in fact of the

order 1/p.

The approximation (3.10) is valid at least up to the order
p-7/%t, It fulfills the differential equation (3.3) uniformly at
least up to the order p~*/!!. A numerical test shows that the
approximation is very good for p > 50. At p=10 one can see in a
plot on the screen that the two solutions do not join well, be-
cause the approximation cos t ~ t - 3n/2 is not valid with suffi-

cient accuracy in an interval 4t = 1/p?®/% around t = 3n/2.

Figure 3.2 shows examples for the shape and the width of the cor-
rection xr(t)—x¢(t), which have been determined by a numerical
evaluation. Except for the scale, the curves agree with the

curve for tv!/%*-p in Fig.3.1.

Xv(t) ~ X, (8 Q=150

\ =5

i
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Fig.3.2: x,(t)-x”(t) at p=250 and 5.
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According to Tab.3.1, the width of the peak in the boundary layer
(defined by a decrease to 1/10 of ite height) behaves as

at, = 2.7/p% (3.11)

whereas the height goes as

1YVl oy = 1-29/0% . (3.12)
The maximum is attained in the boundary layer. Well outside the
boundary layer it is true that yr—y”=0(1/p), 80 that the dif-
ference YV shows sharp needles as a function of t, near
t=(2N+1)w/2. The convergence of Y, to Y, i8 thus not of uniform
quality as p goes to infinity.

4. Test of the accuracy of the approximation to the relaxation
equation

In order to test our application of singular perturbation theory
by a pumerical evaluation, we have selected five sensitive quan-
tities in the boundary layer:

a. the velocity &r(3u/2) and the maximum of the velocity

&r » which are infinite in the approximation y (t);
max

b. the maximum of the correction Iyr(t)—y“(t)lx

c. yr(3u/2) and the time when yr passes zero.

Table 4.1 shows the values obtained from a numerical solution
divided by the results derived from singular perturbatian theory.
As expected the agreement is improving for increasing values of
p. The last column shows that yr.., starts to decrease at about
p=5. At fixed I and increasing 4 this corresponds to the transi-

tion to the case of small oscillations mentioned in §2.
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Q-

P ¥,.(3n/2) [y, v,1,,, T390 vy .(3n/2)

Cuax Cmax

100.0 0.9998  0.9974 0.9991 0.9993 0.9999 1.00
10.0 0.9967 0.9802 0.9992 1.0024 0.9989 1.00
5.0 0.9922 0.9562 0.9984 1.00862 0.9974 1.00
1.0 0.8615 0.7104 0.9784 1.0390 0.9606 0.85
0.5 0,1864 0.4831 0.8146 0.8970 0.5712 0.50

Tab.4.1: Ratio of the numerical result derived from (3.3) and
the prediction from the approximation (3.8). t=t-3u/2.

5. A new form of the Duffing equation

It is now our aim to derive a new differential equation which is
equivalent to the Duffing equation (1.3). The result looks more
complicated, but it has the advantage to include an exact version
of the superposition (1.6) which was based on an intuitive argu-

ment.
We define u(t) by
u(t): = x(t) - xr(t) R (6.1)

where xr(t) is a solution of the relaxation equation

* » -
24xr+ X, I cos f . (6.2)

If the ansatz (6.1) for x(t) is inserted into the Duffing equa-
tion (1.3), one obtains a differential equation for u(t)

u + 24u + u(3x; + u?) + 3xru= = - xi= f(t) . (5.3)

.
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Since xr(t)zxu(t) outside the boundary layers, we might just have
used the latter. However, it will turn out that in large domaines
of the parameter plane the equation for u(t), as defined in
(5,1), admits indeed of periodic solutions of uniformly emall
magnitude (msee §7). As a comparison to (5.2), the differential
equation satisfied by x“(t) is

x“ = - gX“ - %rzx;. 9 (504)
which is highly singular at x“=0.

Equation (6.3) has the disadvantage that it contains the function
xr(t) which is known only numerically. But for a given value of
p the periodic solution of the relaxation equation is uniquely
defined and (56.3) is then exactly equivalent to the Duffing equa-
tion (1.3). Equation (5.3) suggests possibilities for approxima-
tions which one would not guess directly from the original equa-
tion.

From a mathematical point of view, (5.3) is of the type of Hill'’s
equation, generalized by a damping term, two nonlinear terms and
an external force f(t).

In a steady state, the nonlinear u-oscillator (5.3) is excited in
two ways:

a. By the periodic external force f(t) = - §,. It will be
shown that in a large part of the I'yd-plane the dominant contri-
bution to f(t) consists of two narrow impulses of opposite signs
in the boundary layers (Fig.6.2).

b. By the time dependence of the coefficients, in particular
in the term 3x;(t)u.

The shape of f(t) can be calculated from g(r) and (3.9) in the
region of the parameter plane where the approximation (3.8) is
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valid. Near t=3m/2 the peak and the dip have the magnitudes
1.0(rr/24) and -1.72(r/24), respectively, and the time difference
is 4t=0.81/p%. Since ' = %7v™% «+ 0 as T - #w, the integral over
n" over all 7 is zero, i.e. the areas under the broad bump and
the narrow dip are the same. This result suggests to approximate
f(t) by a §'-function. However, it turns out that the term -3x%u
has a zero at the dip of f(t) and is very rapidly varying in the
neighborhood, so it is not useful to approximate f(t) by &' (t).

It will be of interest to study the effects of both excitations
in the resonance region. Figure 5.1 shows the time dependence of
the excitation f(t) and the response u(t) for parameters in the
range of the superharmonic branch of the second resonance, for
which the coefficient of the second term of the Fourier expansion
is larger than that of the first term. This resonance is discus-
sed in detail in [1,2]. The structure of f(t) would be even nar-
rower for smaller values of 4. It might be useful to study the
connection between the treatment of resonances in terms of the

u-oscillations and by the method of Parlitz and Lauterborn [4].

s
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Fig.5.1: f(t) and u(t) for the superharmonic solution at r=17,
A4=0.1 corresponding to p=66.
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In Fig.5.2 we show that the exact solution x(t) appears as a
superposition of a background x,(t) and an oscillation u(t) even
for the relatively small value I'=17. '

Fig.5.2: The oscillation of x(t) around the background x.(t) for
the solution shown In Fig.5.1.

6. Nuuericai study of the equation for u(t) at r=10¢

In order to get information on the magnitude of the various terms
in (6.3) at a fixed large vsalue of " and different values of 4,
we have performed numerical calculations. Figure 6.1 shows the
different terms at r=10%, 4=50, which belongs to p=100. All
terms are appreciably different from zero only in the range of
the boundary layer. It is seen that all linear terms are of com-
parable magnitude. In particular, the ratio of the maxima of u
and 24u, which goes to zero for large 4, is about 1/2. The
maximum of the nonlinear term 3x,u? is only 1/8 of the maximum of
3xfu and u? is still smaller. The maximum of u(t) is 1/20 of the
maximum of x,(t). Neglecting the force f(t) outside the bound-
ary layers is justified since it turns out to be about 500 times
smaller than the maximuym of f(t) within the boundary layers.
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119.6.1: Structures of the terms in (5.3) at r=10%, The t-scale
is the same in all cases. The numbers give the magnitude of the
maxima. The maximum of the largest nonlinear term 3x.u? is 2110.

Figure 6.2 shows the force f(t) and the response u(t) at fixed
r=10* and 4 between 4 and 100. At 4>50 both have qualitatively
the same shape. As 4 becomes smaller, u(t) shows damped oscilla-
tions which enter the t-region between the boundary layers and
are visible even at the end of a half period at 4x0.8 (similar to
Pig.1.2). The width of the structure of f(t) decreases in agree-
ment with the estimate in §5.

A=Y 40 | 20 50 400

Max=1154c0 40200 Y6300 48450 3040

Fig.6.2: f(t) = -X, near t=3n/2 at I'=10% and 4 from 4 to 100.
The dotted line shows 1024 u(t). The t-scale is the
same In all cases.




_20._

The dip of u(t) is a consequence of the fact that the particle
cannot follow the rapid motion of the minimum when it passes the
origin. The bump has a contribution from the attraction towards
the new location of the minimum and another one from the rapid
change of the potential.

Fig.8.3 shows a comparison between uUsxX-x and x-x_ for I'=10°. At
4=100 which belongs to p=50, u is much smaller than X=X s i.e. X,
is a much better approximation to the exact solution x(t) than

X,+ At 4=4 the two curves are near to each other in the boundary
layer as expected because of the large value p=1250. They agree

very well in the range of the oscillations.

A=Y Q20 Ao

Fig.6.3: Comparison between x{t)-xa(t) and u(t} at r=10% and 4
from 4 to 100. The agreement Is very good Iin the range of the
oscillations. The t-scale iIs the same in all cases.

Since we shall study the linearized version of (5.3) in §7.1, it
is of interest to determine the magnitude of the maxima of the
nonlinear terms as a function of 4 at fixed r'=10%. In Table 6.1
we have divided these values by the maximum of |X,| in order to
reduce the variation.
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4 100 50 20 10 5
p 50 100 250 500 1000
24u 1.41 1.40 0.79 0.29 0.08
u 0.27 0.76 1.45 1.38 .23
3x,%u 0.69 0.96 1.18 0.86 0.62
3x,u?  0.035 0.12 0.43 0.60 0.46
u? 0.001 0.009 0.07 0.16 0.15

Tab.6.1: The maxima of various terms in (5.3) at r=10% and
different values of 4 divided by the maximum of |x.|.

As expected, the nonlinear terms are negligible at larée 4. The
leading nonlinear term becomes important at about 4¢20. Figure
6.4 shows a comparison between the linear term Sx;u and the non-
linear terms as a function of time at I'=10%, 4=10. Since u is
small in comparison with Xps the nonlinear terms are important
only in the boundary layer and the first oscillations, since they
decrease more rapidly than u(t).

Fig.6.4: Comparison of the nonlinear terms in (5.3) with 3xiu at
' r=10%, a=10.
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7. Approximations to the new form of the Duffing equation
7.1 The relaxation approximation u(t) =~ 0

First, we consider e fixed large value of I' and increasing values
of 4. The above discussion shows that f(t) is decreasing, so we

expect that u(t) becomes smaller and the exact solution x(t) ap-

proaches x,(t). This corresponds to the statement that the iner-
tia term x in the Duffing equation becomes negligible.

We estimate the importance of x in comparison with 24x by cal-
culatipg the ratio X./24x, which has its largest values in the
boundary layer. Equation (3.6) leads to

VvV = ——;‘.-L— = .
24;‘;‘ n (24)%/9

” rvtll

(7.1)

We use the maximum of lq"/d;l as given in Table 3.1 and solve
for 4

4a=0.8"""2, 4-1.7%forvo=o0.3. (7.2)

One can expect that this curve in the I',d4-plane gives roughly a
lower limit for the validity of the relaxation approximation as
long a8 I" is not too small,

Another means of obtaining the critical curve 4 = r% is offered
by the scaling transformations used to establish the thickness of
boundary layers (Ref.3, p.419). We start from (3.2), which is
equivalent to the Duffing equation (1.3), perform again a shift
of the time variable which leads to sin t instead of cos t on the
right hand side, and consider small t-values, so sin t can be
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approximated by t. Then we write y=Yu, t=T8é and obtain

% g%; + P24 %% + pvr = T8 . (7.3)

If we choose p=6x we expect that the reduced equation in T, fol-
lowing from (7.3) by letting -0, has a solution with the asymp-
totic behavior Y(T)~T%, so that it matches the solution (sin t)%,
valid outside a small neighborhood of the origin. Next, we
choose & s0 that

2 B ICIC VRN I P L (7.4)

i.e. we balance the friction term in (7.3) against the two terms
on its right. With this choice, the acceleration term is
O(P/A‘)%. i.e. it is vanishingly small if 4 increases quicker
than F%. Thus the boundary layer around t=0 has a "thickness" of
0(1/p%) with p of (3.2). The reduced differential equation de-
scribing the evolution in the boundary layer is obtained by let-
ting Ir'+e: it is (3.7) with p-Y.

Below the line 4=F% we can only balance the acceleration term
against Y? and T and obtain a boundary layer of thickness
0(1/P%), independent of 4. Letting /e, the reduced differential
equation for the boundary layer isas

v.‘.Y’:T! . (7.5)

For a quantitative test of the approximation u(t)x~0, Tab.7.1
gives a comparison between results derived from numerical solu-
tions of the Duffing equation and of the relaxation equation
(3.3). Since the main difference is expected within the boundary
layer, we compare again the ratios of the sensitive quantities
used already in Tab.4.1.




4 P x(é%) v(é%) lvnax tx=o—g§
P;104 (4a=54) 100 50 1.006 0.985 1.017 1.000

50 100 1.016 0.957 1.031 1.076
r=104 ‘(4=17) 100 2.32 1.001 0.997 1.002 1.000

46 5 1.002 0.992 1.010 1.013

12 20 1,023 0.938 1.034 1.1114

5 46 1.068 0.840 0.978 1.323

r=10* (4=10) 20 2.5 1.006 0.987 1.011 1.021
10 5 1.015 0.964 1.026 1.062

& 10 1.037 0.911 1.024 1.164

Tab.7.1: Ratios of sensitive quantities calculated from the
Duffing equation and from the relaxation equation (3.3). The
valuyes 1n brackets in the second column are the estimates (5.2)
for the 4-valuyes below which the inertia term becomes important.

It is seen that the accuracy of the relaxation approximation
behaves as expected from (7.2). In the I'a-plane, the range of
validity extends up to amall values of /. In this region, the
comparison can be made between the Fourier coefficients calculat-
ed from the numerical solutions of (1.3) and (3.3). A good
agreement is found for 432.

7.2 The linearized equation for the quscillator

We have seen in §7.1 that the approximation u(t)=0 is valid in
the upper part of the I'd-plane down to a curve which rises as F%
for large I' and runs near 4=2 for small I'. One can expect that
in the neighborhood of this boundary u(t) is still so small that
the nonlinear terms in (5.3) can be neglected. Therefore, we

shall discuss the linearized equation

U+ 240 + 3x2u = -X = f(t) . - (7.6)
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As mentioned above, at large p=P%/24 the dominant contributions
to f(t) are the two impulses in the thin boundary layers. There-
fore, in the large time interval between the boundary layers, it
is of intereast to study (7.6) with f(t)=0, We apply the usual
ansatz " :

u(t) = e 4tw(t) (7.7)
and obtain a Hill equation

w o+ u;(t)w = 0, with w;(t) = 3x;(t) - a2, (7.8)
where X, is well approximated by X Xpin (see (3.8)). Then, u;
agrees with u;.c in (2.4). The advantage in comparison with the
intuitive ansatz in §2 is that we now have expressions for the
force f(t) and for the difference between x, and X, in the bound-
ary layer, which make it possible to calculate not only the time-
dependent frequency of the u-aoscillation but also its amplitude.

The neglected nonlinear terms in u correspond to the corrections
to the parabolic approximation in V(x,t), eq.(1.5).

Instead of the quasistatic approximation (§2) we shall now dis-
cuss the parametric excitation and the damping in (7.8) in the
adiabatic approximation, where the action, which is proportional
to the energy E(t) divided by w,, decreases as exp(—ZAt)[I]ye
consider the motion in an interval between the boundary layers at
t=-n/2 and /2 and find

_.At .
u(t) =.Hg——~— cos [uad(t)t + ¢] (7.9)
w,(t

with
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t P
w g(t)t = 3 rA I(cos ty')% dt'
0

t

—w (t)t + 3 A [ sin th 4o (7.9a)
u 0 (cos t')

For a detailed test, we have used a numerical solution of the
Duffing equation in order to determine the time intervals 4t
between adjacent zeroes with u>0 of u(t). We approximate w, by
w, and take the average of this frequency in each of the small
time intervals. Then the prediction from (7.9) is 4t = 2n/w,.

Table 7.2 gives the ratios of the numerical determinations of the
time iptervals to the predictions.

r =10 r = 104 r = 10°®
at/pred, Unax 4t /pred. Unax 4t/pred. Upax
1.007 1.74 1.003 2.41 1.003 4.48
1.007 1.75 1.003 2.42 1.003 4.48
1.007 1.76 1.003 2,42 1,002 4.48
1.004 2.44 1.006 4.48

Tab.7.2: Zeros of u(t) and heights of the maxima for harmonic
oscillations at 4=0.3 and varpus values of I' in the range
t=2nN...2uN+n/2. We give the ratios 4At/(w,/2m), using only the
first term in (7.9a) and the heights of the maxima expressed by
the value of U in (7.9).

The numerical calculation shows that the oscillation of u(t) is
asymmetric, i.e. the anharmonic terms are not negligible in our
range of parameters I, 4. The magnitude of Uy, is larger, as

expected from the shape of the potential belonging to eq.(5.3).
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With U,y = (Upax+Up;p)/2 we find (Uy,; p=Upax)/Uyy = 0.10 at r=10?
and 0.06 at I"s10°%,

The corrections following from the adiabatic treatment lead to @
constancy of Uy,,x (Tab.7.2).

In [6], Byatt-Smith gives an equation for X=X, in the limit of

large ' and fixed 4 which agrees with (7.9) except for a factor
F%/P% and an additional term in (7.9a). He uses this equation at
I'=1000, where nonlinear effects are not yet negligible according
to our results.

As I' increases at fixed 4, U,, is increasing but U,,/r% is de-
creasing, and therefore the linear approximation becomes better.
Assuming a8 power law, we find by a crude estimate in the range
r=10%,.,10"% that U,V/F% decreases as 1/F% in agreement with
Byatt-Smith’s formula.

7.3 The magnitude of u(t) in the limit I'+e, a=r*
To ascertain the domains of parameter space where u(t) can be
neglected for large I',d4 we transform (5.3) to a nonlinear

integral equation for u(t):

u(t) = A(f.u)ui(t) + B(f.u)uz(t)

t
- J K(t,t')[3us(t')y_(t') + ut(t’) + £(¢')] dt’ (7.10)
o .
where
u,(t)u,(t') - u, (t'")u,(t)
K(t,t') 1 2 1 2 (7.11)

) u (tHu, (27) - u (7 )ug(th) r
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The coefficienta A(f,u), B(f,u) are determined so that the right
hand side is a periodic function of t. The functions u,(t) and
u,(t) are two independent solutionas of the homogeneous part of
(7.6). We may try to solve (7.10) by iteration; the first atep
is

W Ve = ACE,0)u () + B(£,0)u,(t)

t
- I K(t,t')f(t')dt’ (1.12)
0

and the problem is to show that the sequence of iterates obtained
in this manner is convergent to a quantity that is negligibly
small for I"', 4 large enough. In particular u(i)(t) must be
bounded by quantities that tend to zero as I',d-+», A difficulty
is that one has to show that also the derivatives are bounded in
a similar manner, since we expect the relaxation solution x(t) =«
Xr(t) to give good approximations also concerning the slope of
the periodic solution at the origin.

It is clear from (7.11) and (7.12) that an essential role is
played by the solutions u,(t), u,(t) of the homogeneous linear

equation:

ﬁ/r% + (24) ﬁ/r% + 3y;(t)u =0 . (7.13)

For our purposes, it is enough to know asymptotic forms of these
solutions (for large I'yd): the change of variables (7.7) leads
from (7.13) to

w/r 4+ (3y2 - a/2p)w = 0, (7.14)

which is equivalent to (7.8).



Equation (7.14) is of the Schrédinger type and may be compared
with the equation of motion of an electron in a periodic poten-
tial:

- %%°"+ V(x)e = Ee , (7.18)

where we have replaced w by -¢, t by x, 3y} by -V, #2/2m by 1/p%,
and 4/2p by -E. If one compares the allowed and forbidden energy
bands with the stability regions, one has to take into account
the damping factor e-‘it in the definition of w(t), eq.(7.7).

Equation (7.14) can, for large I', be solved by means of the WKB
method. If the points I"',4 lie asymptotically above the line
Aar%. then 4/p~+» and consequently the asymptotic solutions of
(7.14) are exponential functioms with real, t-dependent expo-
nents. A more careful discussion shows that the inclusion of the
factor e'dt leads to decaying exponentials. For this situation
(A)>P%) we can show that indeed the corrections to y, coming from
the iteratien of (7.10) are negligible for large " and 4. The
details will be presented elaewhere.

If 4 increases like P% or less quickly, there are turning points
of the WKB equation (7.14) that get close to each other as 4/p~0.
Since y} =~ t“ near its zero, the distance d between the turning
points is 0[(4/p)%] and the wavelength )\ is 0[1/P%/(A/p)x]. The
condition of applicability of the WKB method is d>>), which is in
fact 4>>F%. Thus we again obtain the critical line of §7.1. The
question af existence and uniqueness of the periodic solutions
described above for large I and 4 will be discussed and answered
affirmatively in [8].
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8. The limit I'+e and 4<<s/%

N
\

If the damping term increases less quickly than r%. then the re-
laxation equation is no longer engcted to give a good uniform
asymptotic description of the Duffing equation, as we have seen
in §7.1. Using scaling transformations, we noticed there that a
boundary layer near t=0 of order 1/F% appears instead, within
which the equation of motion reads

¥+ x> =17, with x=yrx' . T=tr | (8.1)

Here we assyme a shift of the time scale by 3n/2. In contrast to
the relaxation equation, (8.1) does not admit of solutions which
behave like T% both for T+» and for T+-». There does exist one
solution that behaves like T% as T--« and, using the symmetry
T+-T, X«+-X of (8.1), one salution that behaves like T% as T=+e,
However, the two solutions are different from each other. The
problem is then to decide on the boundary conditions that are
used to pick out the relevant solution of (8.1). 1In general, it
is not possible to decide on this and indeed, if for instance 4
is a constant as I'+», various solutions of (B8.1) are relevant for
the periodic asymptotic solution of Duffing’s equation. However,
if 4+» as I'+», then we expect that for t just before the boundary
layer u(t) =~ 0 and therefore y(t) = (sin t)% which is proportion-
al to t%. Thus it appears that in this domain of parameters, the
boundary condition on (8.1) relevant for the periodic solution of
Duffing’s equation is XaT% as Te~-o,

Clearly this particular solution of (8.1) may be obtained only
numerically, The values of its slope at T=0 and the value T,,
where it passes through zero, may be scaled back to obtain pre-
dictions for the slope x(t=0), the value x(t=0) and the position
of the zero of the periodic solution x(t) of Duffing's equation,
for large I' and 4 proportional to I"'® (a<¥%):
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x(3w/2) = - 0.67 r% ; x(3n/2) = 0.47 r% ;

£(x=0)-3n/2 = 0.96/r% ; t (u=0)-3m/2 = 1.79/r% , (8.2)

where t, is the first zero of x(t) after t=3w/2.

The remarkable feature of these results is their independence on
the damping 4, as long as A((P% and 4+, as I'+w, In contrast,
the values of the same quantities for A>>F% do have a dependence
on 4, through the quantity p = r%/(24).

We have made a numerical evaluation of the Duffing equation in
order to test the predictions of (8.2). Table 8.1 shows the cal-
culated values divided by the prediction at 4=2., It is seen that
the ratio goes to 1 as predicted in the limit of large I.

ro | 104 106 109
t,(u=0)-8a/2 1.18 1.08 1.00
t(x=0)-3m/2 1,22 1.08 1.02
x(31/2) 1.10 1.04 1.02
v(3n/2) 0.88 0.96 1.00

Table 8.1: Test of the prediction (8.2). The numbers are the
exact values divided by the prediction for the limit of large I'.
They belong to 4=2, whereas the predictions are made for increas-
ing 4. :

Up to now, we have investigated only the scaling properties of
the periodic solution, assuming that 4+ as '+, In analogy to
§3, it is also of interest to obtain an asymptotic expression for
this solution.

After having obtained preliminary results on this, our attention
was called to recent papers hy Byatt-Smith [5,6], who derived

such an asymptotic expansion in the case d4d=const, where the
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boundary conditions on the solutions of (8.1) are not prescribed.
Our presentation differs to some extent from that in [5,6].

When sin t =« 1, we expect the periodic solution to approach
(ain t)%; the corrections are obhtained by formally iterating the
Duffing equation:

(1/r%)§ + (24/r%) 3 + y? = sin t ; (8.3)
y L¢(t) = (8in t)% + (2/27) 1 cos?t/(sin t)%
out;1 ;z
o X _ % %
+ g [1/(sin t) ] (24/r%) cos t/(sin t)% . (8.4)

We now perform in (8.3) the change of variables:

t=1/r%, y = x/rk | (8.5)
which turns it into:

%+ 2yk + x* = % sin (7/r¥%) « T + Tos6rk) + ... (8.86)

In (8.86), 1=4/r% and we have expanded the right hand side for
T<<r%. As +», we recognize that (8.6) goes over into the bound-
ary layer equation (8.1). Consider now the solution X ,(T) of
(8.1) which behaves like T% as T-+®. There exists just one such
solution. It is not a solution of (8.6); there are corrections
which may be obtained iteratively from (8.6):

Xy, (1) = Xg(D) + ¥ X (1) 4 ... (8.7)

where X,(T) is the solution that vanishes as T++® of the equation

2 = DY
Yi + 3XF(TIX, 2k, (8.8)
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etc. One verifieas that the asymptotic expansion Xi 1; aa(t) of
(8.7) as T++®, matches the expansion (8.4) as t-0, so that we
expect

Yo(t) = ¥oue,1(8) + (1778 x  (er¥)

- (1/r*>x

iy 1; as (8.9)

to be a uniform approximation to a solution of (8.3) on the whole
interval [0,n/2].

Our interest lies, hawever, in the solution X(T) of (8.1) which
behaves like T% as T-—eo and this solution is different from
XO(T). So we write

X(T) = Xg(D) + X (D) , (8.10)

where X,.(T) verifies the equation

Xr + 3er5(T) + 3X2X,(T) + X2 =0 . (8.11)

Initial conditions for (8.11) are obtained from (8.10) and the
definitions of X(T) and X,(T). The next problem is that of ob-
taining an asymptotic expansion of X,(T). This is not very easy.
For T large, X,(T) = T% and the transformations g = T%, X, (T) =
P(q)/q% change (8.11) into

d2P/dg* + P(27/16 + 9/64p2)
+ (27/16)P3/n% + (9/16)P*/n% = 0 . (8.12)
Clearly, as g-+«, (8.12) tends to the equation of motion of a free

oscillator with frequency w,.= 3/3/4. However, it is only true
that the energy E(n) = wiP?/2 + (dP/dn)2?/2 tends to a finite
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limit as p-e; the phase does not behave like w,n + conat for
large n. The reason lies in the small power of 1/ multiplying
the nonlinear terms. The behavior of the phase may be obtained
by going over to polar variables, R(p) = (ZE(q))x, tan ¢(p) =
(dP/dn)/P(n) and applying Bogolyubov-Krylov averaging to the re-
sulting equations. The equations satisfied by R(n), ¢(n) look
complicated but they simplify considerably after averaging. In
fact, one has to perform the average to the second order (i.e. in
0(1/9%) and 0(1/9%)).

Averaging of the equation containing dR/dp leads to dﬁ/dq = 0
both in 0(1/0%) and 0(1/0%). i.e. R = ﬁ, + 0(1/0%); on the other
hand, the equation for ¢(n) gives, after removing terms of
0(1/0%) and averaging:

do/dn = vy + (R/n%)(Te)/24 (8.13)
so that

o(n) = vy - (1/3/8)RZn% + 0(1) . (8.14)
Thus,

Yriasl®) = ‘Ro/”%)°°°[“oﬂ"(7J@/3)350%+¢0)]+0(1/q%). (8.15)

The numbers R,,¢, may he determinegxonly by explicit integration
of the differential equation (8.1) with the boundary condition
X*T% as T--ow,

Clearly, outside the boundary layer t=0(P_%) the oscillations
(8.15) decay due to damping, but this effect is not yet incorpo-
rated in the outer expansion (8.4). Taking (8.5) into account,
we see that the corrections to the solution y(t), due to (8.15)

are:
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o[1/(rta¥)] - 0[1/<r*T*>] = oft/erkrly) < of1/iM] L (s.16)

Thues, we look for solutions of (8.3), for t>>1/P% in the form of
an expansion:

y(t) = youp.  (8) + (/rhug(6) + (1/rfyu,(e) + ... (8.1T)

out;

This is the analogon of equations (3.18-19) of [6]. We substi-
tute (8.17) into (8.3) and equate coefficients of like powers of
(1/F%) (up to I/F%,A/r%). This gives to first orders:

(1/r%)ﬁi(t) s (24/r%)ﬁ1(t) +3y2 (D (8) = 0,  (8.18a)

(1/r8)i,(t) + (24/rF)iy (1)

t 8¥out; 1 (Blug(t) = -Bu (tluy(t) . (8.18b)

Equation (8.18a) describes a decaying oscillation, which may be
treated in an adiabatic approximation if one uses the time t=PKt.
One obtains the ansatz equation (7.9) for the solution. The con-
stant U, and the phase are fixed from the condition that as t-0,
we should obtain (8.15). However, there is clearly a difficulty:
the term of the phase containing q%,‘i.e. T%. cannot yet be re-
produced. This correction is proportional to .

The reason lies in the fact that in the analogon of (8.18b) writ-
ten for u,(t) there appear resonant terms on the right hand side
(with respect to the fast variable 7v), so that there are no peri-
odic solutions. Thus one has to apply the method of Lindstedt
and Poincaré and allow for the addition to the frequency
y,u;;,(t/rx) of a power series in 1/ A with coefficients func-
tions of t/F%. Since there are no secular terms in the equation
of u,(t), the first term in the series is 0(1/F%). Returning to
the original time variable, i.e, writing in the phase the factor

r%

explicitly, we obtain a correction of O(P%) as desired.
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With this, we expect the asymptotic expansion for the periodic
solution in the interval [0,n/2] to be:

i | % %
y(6) = Yo(t) + (/rtyx erky - asifyx ek
+ (1/F%)u1(t) + (/M) v L (8.19)

A periodic solution is'obtained by subtracting yo,y¢;,(t) from
(8.19), repeating the result periodically with appropriate sign
changes and then adding Youtr;1(t).

9. The Fourier expansion of x(t) at large I

We show in Fig.9.1 the ratios cp/c, of the Fourier coefficients
of the expansion

x(t) = 2 ch cos(nt - xn) (9.1)

for a harmonic solution at Ir=1000, 4=1, which has nonvanishing
coefficients only for odd values of n. The result is compared
with the coefficients of the expansions for x.(t) and for x“(t).

It is seen that the ratios agree very well up to n=5. Then, the
coefficients of x(t) tend towards a peak at n=15, which belongs
to the rapid oscillations of u(t). The convergence is slower for
x“(t) than in the other cases because the derivative becomes in-
finite at the zeros of this function.
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Fig.9.1: Ratios of the Fourier coefficients c,/c, for x(t),
xc(t) and x“(t) at r=1000, a-=1.

From numerical evaluations of the Duffing equation, one obtains
with 4 in 8 wide range (0.1...560) and large I the result c‘/r% x
1.16. It is remarkable that the first order of the method of
harmonic balance gives c‘/P% = 1.1006 and the second order 1.145,
i.e. the results for c, are almost correct although the solutions
x(t) are much different from each other [(2]. The second-order
method gives in addition for large I' the ratio c,/c, = 0.165,
which differs by only 20% from the value obtained from the numer-

ical solution of the Duffing equation.
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10. Summary

We have investigated the behavior of the harmonic solutions of
the Duffing equation

X + 24x + x? = [ cos t (10.1)

for large values of the parametera [ and various values of 4.
First, we recall our conclusions in the case that I'+» and 4 in-
creases ag r“, All statements remain valid if a linear term kx
is added on the left hand side of (10.1) and k is kept constant.
As +», this term never contributes to the leading asymptotic
approximation of the solution.

10.1 The leading term in x(t) for I+, 4=const~r“

a > ¥

x(t) « (r/34) sin t; p = rx/24 -~ 0; x and x*® are negligible.
a = ¥:

x(t) = x;(t), where x; is the periodic solution of

24xr.+ x; =" cos t , (10.2)

p = const, X is negligible.
¥>a > %

X(t) o« % (t); xp(t) = x,(t) = (I cos t)% if It-n/Z-NuI)i/px.

As '+», p-» and X and 24X are negligible.
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¥ > a)d> 0
x(t) « x,(t) if {t-u/2-Nw|>1/4, see (B.19).
a = 0:

x(t) = X (t) + 0(1/rh)
10.2 The magnitude of u(t) = x(t) - xr(t) es ' + », 4 = const-I'*

¥>a > %

Within the boundary layer u(t) has a dip-bump structure which
vanishes as I" increasea. It is of order 1/p elasewhere.

a = ¥

The exponent of the damping factor e-At for one u-oscillation
(2n/wy)4 is of order 1.

¥ >a >

u(t) may have oscillations within the boundary layer.

a = ¥%:

4-width of the boundary layer is of order 1.

¥ >a > 0

At large finite values of I"', the above mentioned dip-bump struc-
ture of u(t) in the boundary layer is continued in the form of

oscillations, which are damped as e"t for t>1/r%. For suffi-

ciently large values of I, u(t)=0 at the beginning of the next
boundary layer,




)
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a =0, 4 = const:

If na<<1, u(t) arrives at the left hand sides of the boundary
layers with a relatively large amplitude. As I'+e, the maximum of
lu/x, | goes to zero as 1/r%. i.e. very slowly.

10.3 Widths of the boundary layers
¥ > a > % Width = 0(1/p%).
¥ > a > 0: Width of the inner boundary layer = 0(1/r%).

10.4 Approximations for x(t) and u(t) outside the boundary
layers

For large I', x(t) « x_(t)., If {u/x,| is small, u(t) has been
calculated from the adiabatic approximation for the motion in a
slowly time-dependent parabolic potential. If the ratio is
larger, the anharmonic terms of the potential lead to an asym-
metric oscillation of u(t). A quasistatic approximation gives
good results. The adiabatic approximation should be even better,
but it has not yet been calculated for this case.

10.5 Calculations for finite values of I" and 4

In addition to the treatment of various limits I"+e, we have stud-
ied in large domains of the I'y4-plane approximations based on the
decomposition x(t)=x.(t)+u(t), where x,(t) fulfills the relaxa-
tion equation (10.2). This decomposition is related to the phys-
ical description as the motion of a particle in a slowly time-
dependent potential. From the equation for u(t), which is equiv-
alent to the Duffing equation, one can guess approximations which
are much less obvious if one works with (10.1),
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